π-phase modulated monolayer supercritical lens

Fei Qin, Boqing Liu, Linwei Zhu, Jian Lei, Wei Fang, Dejiao Hu, Yi Zhu, Wendi Ma, Bowen Wang, Tan Shi, Yaoyu Cao, Bai ou Guan, Cheng wei Qiu, Yuerui Lu*, Xiangping Li*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    46 Citations (Scopus)

    Abstract

    The emerging monolayer transition metal dichalcogenides have provided an unprecedented material platform for miniaturized opto-electronic devices with integrated functionalities. Although excitonic light–matter interactions associated with their direct bandgaps have received tremendous research efforts, wavefront engineering is less appreciated due to the suppressed phase accumulation effects resulting from the vanishingly small thicknesses. By introducing loss-assisted singular phase behaviour near the critical coupling point, we demonstrate that integration of monolayer MoS2 on a planar ZnO/Si substrate, approaching the physical thickness limit of the material, enables a π phase jump. Moreover, highly dispersive extinctions of MoS2 further empowers broadband phase regulation and enables binary phase-modulated supercritical lenses manifesting constant sub-diffraction-limited focal spots of 0.7 Airy units (AU) from the blue to yellow wavelength range. Our demonstrations downscaling optical elements to atomic thicknesses open new routes for ultra-compact opto-electronic systems harnessing two-dimensional semiconductor platforms with integrated functionalities.

    Original languageEnglish
    Article number32
    JournalNature Communications
    Volume12
    Issue number1
    DOIs
    Publication statusPublished - 1 Dec 2021

    Fingerprint

    Dive into the research topics of 'π-phase modulated monolayer supercritical lens'. Together they form a unique fingerprint.

    Cite this