Abstract
A low-lying state in In82131, the one-proton hole nucleus with respect to double magic Sn132, was observed by its γ decay to the Iπ=1/2- β-emitting isomer. We identify the new state at an excitation energy of Ex=1353keV, which was populated both in the β decay of Cd13183 and after β-delayed neutron emission from Cd13284, as the previously unknown πp3/2 single-hole state with respect to the Sn132 core. Exploiting this crucial new experimental information, shell-model calculations were performed to study the structure of experimentally inaccessible N=82 isotones below Sn132. The results evidence a surprising absence of proton subshell closures along the chain of N=82 isotones. The consequences of this finding for the evolution of the N=82 shell gap along the r-process path are discussed.
Original language | English |
---|---|
Article number | 132501 |
Journal | Physical Review Letters |
Volume | 112 |
Issue number | 13 |
DOIs | |
Publication status | Published - 1 Apr 2014 |