TY - GEN
T1 - 3D box proposals from a single monocular image of an indoor scene
AU - Zhuo, Wei
AU - Salzmann, Mathieu
AU - He, Xuming
AU - Liu, Miaomiao
N1 - Publisher Copyright:
Copyright © 2018, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2018
Y1 - 2018
N2 - Modern object detection methods typically rely on bounding box proposals as input. While initially popularized in the 2D case, this idea has received increasing attention for 3D bounding boxes. Nevertheless, existing 3D box proposal techniques all assume having access to depth as input, which is unfortunately not always available in practice. In this paper, we therefore introduce an approach to generating 3D box proposals from a single monocular RGB image. To this end, we develop an integrated, fully differentiable framework that inherently predicts a depth map, extracts a 3D volumetric scene representation and generates 3D object proposals. At the core of our approach lies a novel residual, differentiable truncated signed distance function module, which, accounting for the relatively low accuracy of the predicted depth map, extracts a 3D volumetric representation of the scene. Our experiments on the standard NYUv2 dataset demonstrate that our framework lets us generate high-quality 3D box proposals and that it outperforms the two-stage technique consisting of successively performing state-of-the-art depth prediction and depth-based 3D proposal generation.
AB - Modern object detection methods typically rely on bounding box proposals as input. While initially popularized in the 2D case, this idea has received increasing attention for 3D bounding boxes. Nevertheless, existing 3D box proposal techniques all assume having access to depth as input, which is unfortunately not always available in practice. In this paper, we therefore introduce an approach to generating 3D box proposals from a single monocular RGB image. To this end, we develop an integrated, fully differentiable framework that inherently predicts a depth map, extracts a 3D volumetric scene representation and generates 3D object proposals. At the core of our approach lies a novel residual, differentiable truncated signed distance function module, which, accounting for the relatively low accuracy of the predicted depth map, extracts a 3D volumetric representation of the scene. Our experiments on the standard NYUv2 dataset demonstrate that our framework lets us generate high-quality 3D box proposals and that it outperforms the two-stage technique consisting of successively performing state-of-the-art depth prediction and depth-based 3D proposal generation.
UR - http://www.scopus.com/inward/record.url?scp=85060465078&partnerID=8YFLogxK
M3 - Conference contribution
T3 - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
SP - 7639
EP - 7647
BT - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
PB - AAAI Press
T2 - 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
Y2 - 2 February 2018 through 7 February 2018
ER -