TY - JOUR
T1 - 3D scene generation for zero-shot learning using ChatGPT guided language prompts
AU - Ahmadi, Sahar
AU - Cheraghian, Ali
AU - Chowdhury, Townim Faisal
AU - Saberi, Morteza
AU - Rahman, Shafin
N1 - Publisher Copyright:
© 2024 Elsevier Inc.
PY - 2024/12
Y1 - 2024/12
N2 - Zero-shot learning in the realm of 3D point cloud data remains relatively unexplored compared to its 2D image counterpart. This domain introduces fresh challenges due to the absence of robust pre-trained feature extraction models. To tackle this, we introduce a prompt-guided method for 3D scene generation and supervision, enhancing the network's ability to comprehend the intricate relationships between seen and unseen objects. Initially, we utilize basic prompts resembling scene annotations generated from one or two point cloud objects. Recognizing the limited diversity of basic prompts, we employ ChatGPT to expand them, enriching the contextual information within the descriptions. Subsequently, leveraging these descriptions, we arrange point cloud objects’ coordinates to fabricate augmented 3D scenes. Lastly, employing contrastive learning, we train our proposed architecture end-to-end, utilizing pairs of 3D scenes and prompt-based captions. We posit that 3D scenes facilitate more efficient object relationships than individual objects, as demonstrated by the effectiveness of language models like BERT in contextual understanding. Our prompt-guided scene generation method amalgamates data augmentation and prompt-based annotation, thereby enhancing 3D ZSL performance. We present ZSL and generalized ZSL results on both synthetic (ModelNet40, ModelNet10, and ShapeNet) and real-scanned (ScanOjbectNN) 3D object datasets. Furthermore, we challenge the model by training with synthetic data and testing with real-scanned data, achieving state-of-the-art performance compared to existing 2D and 3D ZSL methods in the literature. Codes and models are available at: https://github.com/saharahmadisohraviyeh/ChatGPT_ZSL_3D.
AB - Zero-shot learning in the realm of 3D point cloud data remains relatively unexplored compared to its 2D image counterpart. This domain introduces fresh challenges due to the absence of robust pre-trained feature extraction models. To tackle this, we introduce a prompt-guided method for 3D scene generation and supervision, enhancing the network's ability to comprehend the intricate relationships between seen and unseen objects. Initially, we utilize basic prompts resembling scene annotations generated from one or two point cloud objects. Recognizing the limited diversity of basic prompts, we employ ChatGPT to expand them, enriching the contextual information within the descriptions. Subsequently, leveraging these descriptions, we arrange point cloud objects’ coordinates to fabricate augmented 3D scenes. Lastly, employing contrastive learning, we train our proposed architecture end-to-end, utilizing pairs of 3D scenes and prompt-based captions. We posit that 3D scenes facilitate more efficient object relationships than individual objects, as demonstrated by the effectiveness of language models like BERT in contextual understanding. Our prompt-guided scene generation method amalgamates data augmentation and prompt-based annotation, thereby enhancing 3D ZSL performance. We present ZSL and generalized ZSL results on both synthetic (ModelNet40, ModelNet10, and ShapeNet) and real-scanned (ScanOjbectNN) 3D object datasets. Furthermore, we challenge the model by training with synthetic data and testing with real-scanned data, achieving state-of-the-art performance compared to existing 2D and 3D ZSL methods in the literature. Codes and models are available at: https://github.com/saharahmadisohraviyeh/ChatGPT_ZSL_3D.
KW - Contrastive learning
KW - Deep learning
KW - Point cloud object
KW - Zero-shot learning
UR - http://www.scopus.com/inward/record.url?scp=85208261901&partnerID=8YFLogxK
U2 - 10.1016/j.cviu.2024.104211
DO - 10.1016/j.cviu.2024.104211
M3 - Article
AN - SCOPUS:85208261901
SN - 1077-3142
VL - 249
JO - Computer Vision and Image Understanding
JF - Computer Vision and Image Understanding
M1 - 104211
ER -