Abstract
We report that a specific realization of Schwarz's triply periodic hexagonal minimal surface is isotropic with respect to the Doi-Ohta interface tensor and simultaneously has minimal packing and stretching frustration similar to those of the commonly found cubic bicontinuous mesophases. This hexagonal surface, of symmetry P63/mmc with a lattice ratio of c/a = 0.832, is therefore a likely candidate geometry for self-assembled lipid/surfactant or copolymer mesophases. Furthermore, both the peak position ratios in its powder diffraction pattern and the elastic moduli closely resemble those of the cubic bicontinuous phases. We therefore argue that a genuine possibility of experimental misidentification exists.
Original language | English |
---|---|
Pages (from-to) | 10475-10483 |
Number of pages | 9 |
Journal | Langmuir |
Volume | 27 |
Issue number | 17 |
DOIs | |
Publication status | Published - 6 Sept 2011 |