TY - JOUR
T1 - A connectionist ABM of social categorization processes
AU - Van Rooy, Dirk
PY - 2012/8
Y1 - 2012/8
N2 - This paper introduces a connectionist Agent-Based Model (cABM) that incorporates detailed, micro-level understanding of social influence processes derived from laboratory studies and that aims to contextualize these processes in such a way that it becomes possible to model multidirectional, dynamic influences in extended social networks. At the micro-level, agent processes are simulated by recurrent auto-associative networks, an architecture that has a proven ability to simulate a variety of individual psychological and memory processes [D. Van Rooy, F. Van Overwalle, T. Vanhoomissen, C. Labiouse and R. French, Psychol. Rev. 110, 536 (2003)]. At the macro-level, these individual networks are combined into a "community of networks" so that they can exchange their individual information with each other by transmitting information on the same concepts from one net to another. This essentially creates a network structure that reflects a social system in which (a collection of) nodes represent individual agents and the links between agents the mutual social influences that connect them [B. Hazlehurst, and E. Hutchins, Lang. Cogn. Process. 13, 373 (1998)]. The network structure itself is dynamic and shaped by the interactions between the individual agents through simple processes of social adaptation. Through simulations, the cABM generates a number of novel predictions that broadly address three main issues: (1) the consequences of the interaction between multiple sources and targets of social influence (2) the dynamic development of social influence over time and (3) collective and individual opinion trajectories over time. Some of the predictions regarding individual level processes have been tested and confirmed in laboratory experiments. In a extensive research program, data is currently being collected from real groups that will allow validating the predictions of cABM regarding aggregate outcomes.
AB - This paper introduces a connectionist Agent-Based Model (cABM) that incorporates detailed, micro-level understanding of social influence processes derived from laboratory studies and that aims to contextualize these processes in such a way that it becomes possible to model multidirectional, dynamic influences in extended social networks. At the micro-level, agent processes are simulated by recurrent auto-associative networks, an architecture that has a proven ability to simulate a variety of individual psychological and memory processes [D. Van Rooy, F. Van Overwalle, T. Vanhoomissen, C. Labiouse and R. French, Psychol. Rev. 110, 536 (2003)]. At the macro-level, these individual networks are combined into a "community of networks" so that they can exchange their individual information with each other by transmitting information on the same concepts from one net to another. This essentially creates a network structure that reflects a social system in which (a collection of) nodes represent individual agents and the links between agents the mutual social influences that connect them [B. Hazlehurst, and E. Hutchins, Lang. Cogn. Process. 13, 373 (1998)]. The network structure itself is dynamic and shaped by the interactions between the individual agents through simple processes of social adaptation. Through simulations, the cABM generates a number of novel predictions that broadly address three main issues: (1) the consequences of the interaction between multiple sources and targets of social influence (2) the dynamic development of social influence over time and (3) collective and individual opinion trajectories over time. Some of the predictions regarding individual level processes have been tested and confirmed in laboratory experiments. In a extensive research program, data is currently being collected from real groups that will allow validating the predictions of cABM regarding aggregate outcomes.
KW - Social influence
KW - agent-based modeling
KW - connectionism
KW - social psychology
UR - http://www.scopus.com/inward/record.url?scp=84865514697&partnerID=8YFLogxK
U2 - 10.1142/S0219525912500774
DO - 10.1142/S0219525912500774
M3 - Article
SN - 0219-5259
VL - 15
JO - Advances in Complex Systems
JF - Advances in Complex Systems
IS - 6
M1 - 1250077
ER -