Abstract
Sustainable management of groundwater-dependent vegetation (GDV) requires the accurate identification of GDVs, characterisation of their water use dynamics and an understanding of associated errors. This paper presents sensitivity and uncertainty analyses of one GDV mapping method which uses temperature differences between time-series of modelled and observed land surface temperature (LST) to detect groundwater use by vegetation in a subtropical woodland. Uncertainty in modelled LST was quantified using the Jacobian method with error variances obtained from literature. Groundwater use was inferred where modelled and observed LST were significantly different using a Student's t-test. Modelled LST was most sensitive to low-range wind speeds (<1.5 m s−1), low-range vegetation height (<=0.5 m), and low-range leaf area index (<=0.5 m2 m−2), limiting the detectability of groundwater use by vegetation under such conditions. The model-data approach was well-suited to detection of GDV because model-data errors were lowest for climatic conditions conducive to groundwater use.
Original language | English |
---|---|
Pages (from-to) | 342-355 |
Number of pages | 14 |
Journal | Environmental Modelling and Software |
Volume | 85 |
DOIs | |
Publication status | Published - 1 Nov 2016 |
Externally published | Yes |