Abstract
Contrasting tectonic reconstructions of the westernmost Mediterranean have been proposed to explain the origin of the Alboran marine basin contemporaneously with Cenozoic convergence between the African and European plates. Cr-rich pyroxenites in the Ronda massif record the geochemical processes occurring in the subcontinental mantle of the Alboran domain in the Late Oligocene, thus constraining the geodynamic scenario of Cenozoic extension in the western Mediterranean lithosphere. Clinopyroxene in intrusive Cr-rich websterite dikes crosscutting the Ronda peridotite is strongly depleted in Nb-Ta and enriched in light rare earth elements, as typically observed in arc magmas, and is in trace element equilibrium with Neogene subduction-related lavas from the western and central Mediterranean. Sr-Nd-Pb radiogenic isotopes indicate that the mantle source of the Ronda pyroxenite dikes was contaminated by a subduction component released by detrital sediments likely deposited in passive continental margins. Rather than convective removal or delamination of the lithospheric root, our data strongly support Alboran geodynamic models that envisage slab rollback as the tectonic mechanism responsible for the Miocene lithospheric thinning. The Ronda Cr-rich pyroxenite dikes represent the earliest unambiguous manifestation of subduction-related magmatism in the western Mediterranean and testify to the involvement of terrigenous sediments in the primitive stages of subduction.
Original language | English |
---|---|
Pages (from-to) | 237-247 |
Number of pages | 11 |
Journal | Journal of Geology |
Volume | 120 |
Issue number | 2 |
DOIs | |
Publication status | Published - Mar 2012 |