TY - JOUR
T1 - A LiDAR-derived canopy density model for tree stem and crown mapping in Australian forests
AU - Lee, Alex C.
AU - Lucas, Richard M.
PY - 2007/12/28
Y1 - 2007/12/28
N2 - The retrieval of tree and forest structural attributes from Light Detection and Ranging (LiDAR) data has focused largely on utilising canopy height models, but these have proved only partially useful for mapping and attributing stems in complex, multi-layered forests. As a complementary approach, this paper presents a new index, termed the Height-Scaled Crown Openness Index (HSCOI), which provides a quantitative measure of the relative penetration of LiDAR pulses into the canopy. The HSCOI was developed from small footprint discrete return LiDAR data acquired over mixed species woodlands and open forests near Injune, Queensland, Australia, and allowed individual trees to be located (including those in the sub-canopy) and attributed with height using relationships (r2 = 0.81, RMSE = 1.85 m, n = 115; 4 outliers removed) established with field data. A threshold contour of the HSCOI surface that encompassed ∼ 90% of LiDAR vegetation returns also facilitated mapping of forest areas, delineation of tree crowns and clusters, and estimation of canopy cover. At a stand level, tree density compared well with field measurements (r2 = 0.82, RMSE = 133 stems ha- 1, n = 30), with the most consistent results observed for stem densities ≤ 700 stems ha- 1. By combining information extracted from both the HSCOI and the canopy height model, predominant stem height (r2 = 0.91, RMSE = 0.77 m, n = 30), crown cover (r2 = 0.78, RMSE = 9.25%, n = 30), and Foliage & Branch Projective Cover (FBPC; r2 = 0.89, RMSE = 5.49%, n = 30) were estimated to levels sufficient for inventory of woodland and open forest structural types. When the approach was applied to forests in north east Victoria, stem density and crown cover were reliably estimated for forests with a structure similar to those observed in Queensland, but less so for forests of greater height and canopy closure.
AB - The retrieval of tree and forest structural attributes from Light Detection and Ranging (LiDAR) data has focused largely on utilising canopy height models, but these have proved only partially useful for mapping and attributing stems in complex, multi-layered forests. As a complementary approach, this paper presents a new index, termed the Height-Scaled Crown Openness Index (HSCOI), which provides a quantitative measure of the relative penetration of LiDAR pulses into the canopy. The HSCOI was developed from small footprint discrete return LiDAR data acquired over mixed species woodlands and open forests near Injune, Queensland, Australia, and allowed individual trees to be located (including those in the sub-canopy) and attributed with height using relationships (r2 = 0.81, RMSE = 1.85 m, n = 115; 4 outliers removed) established with field data. A threshold contour of the HSCOI surface that encompassed ∼ 90% of LiDAR vegetation returns also facilitated mapping of forest areas, delineation of tree crowns and clusters, and estimation of canopy cover. At a stand level, tree density compared well with field measurements (r2 = 0.82, RMSE = 133 stems ha- 1, n = 30), with the most consistent results observed for stem densities ≤ 700 stems ha- 1. By combining information extracted from both the HSCOI and the canopy height model, predominant stem height (r2 = 0.91, RMSE = 0.77 m, n = 30), crown cover (r2 = 0.78, RMSE = 9.25%, n = 30), and Foliage & Branch Projective Cover (FBPC; r2 = 0.89, RMSE = 5.49%, n = 30) were estimated to levels sufficient for inventory of woodland and open forest structural types. When the approach was applied to forests in north east Victoria, stem density and crown cover were reliably estimated for forests with a structure similar to those observed in Queensland, but less so for forests of greater height and canopy closure.
KW - Australia
KW - Canopy cover
KW - Canopy density
KW - Forests
KW - Height
KW - LiDAR
KW - Queensland
KW - Structure
UR - http://www.scopus.com/inward/record.url?scp=35648990038&partnerID=8YFLogxK
U2 - 10.1016/j.rse.2007.04.018
DO - 10.1016/j.rse.2007.04.018
M3 - Article
SN - 0034-4257
VL - 111
SP - 493
EP - 518
JO - Remote Sensing of Environment
JF - Remote Sensing of Environment
IS - 4
ER -