Abstract
Given samples from a distribution, anomaly detection is the problem of determining if a given point lies in a low-density region. This paper concerns calibrated anomaly detection, which is the practically relevant extension where we additionally wish to produce a confidence score for a point being anomalous. Building on a classification framework for standard anomaly detection, we show how minimisation of a suitable proper loss produces density estimates only for anomalous instances. These are shown to naturally relate to the pinball loss, which provides implicit quantile control. Finally, leveraging a result from point processes, we show how to efficiently optimise a special case of the objective with kernelised scores. Our framework is shown to incorporate a close relative of the one-class SVM as a special case.
Original language | English |
---|---|
Pages (from-to) | 1487-1497 |
Number of pages | 11 |
Journal | Advances in Neural Information Processing Systems |
Volume | 2018-December |
Publication status | Published - 2018 |
Event | 32nd Conference on Neural Information Processing Systems, NeurIPS 2018 - Montreal, Canada Duration: 2 Dec 2018 → 8 Dec 2018 |