A Machine-learning Approach to Integral Field Unit Spectroscopy Observations. II. H ii Region Line Ratios

Carter Rhea*, Laurie Rousseau-Nepton, Simon Prunet, Myriam Prasow-Émond, Julie Hlavacek-Larrondo, Natalia Vale Asari, Kathryn Grasha, Laurence Perreault-Levasseur

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    8 Citations (Scopus)

    Abstract

    In the first paper of this series, we demonstrated that neural networks can robustly and efficiently estimate kinematic parameters for optical emission-line spectra taken by SITELLE at the Canada-France-Hawaii Telescope. This paper expands upon this notion by developing an artificial neural network to estimate the line ratios of strong emission lines present in the SN1, SN2, and SN3 filters of SITELLE. We construct a set of 50,000 synthetic spectra using line ratios taken from the Mexican Million Model database replicating H ii regions. Residual analysis of the network on the test set reveals the network's ability to apply tight constraints to the line ratios. We verified the network's efficacy by constructing an activation map, checking the [N ii] doublet fixed ratio, and applying a standard k-fold cross-correlation. Additionally, we apply the network to SITELLE observations of M33; the residuals between the algorithm's estimates and values calculated using standard fitting methods show general agreement. Moreover, the neural network reduces the computational costs by two orders of magnitude. Although standard fitting routines do consistently well depending on the signal-to-noise ratio of the spectral features, the neural network can also excels at predictions in the low signal-to-noise regime within the controlled environment of the training set as well as on observed data when the source spectral properties are well constrained by models. These results reinforce the power of machine learning in spectral analysis.

    Original languageEnglish
    Article number129
    JournalAstrophysical Journal
    Volume910
    Issue number2
    DOIs
    Publication statusPublished - 1 Apr 2021

    Fingerprint

    Dive into the research topics of 'A Machine-learning Approach to Integral Field Unit Spectroscopy Observations. II. H ii Region Line Ratios'. Together they form a unique fingerprint.

    Cite this