A meta-analysis on biochar's effects on soil water properties – New insights and future research challenges

Ifeoma G. Edeh*, Ondřej Mašek, Wolfram Buss

*Corresponding author for this work

    Research output: Contribution to journalReview articlepeer-review

    193 Citations (Scopus)

    Abstract

    Biochar can significantly alter water relations in soil and therefore, can play an important part in increasing the resilience of agricultural systems to drought conditions. To enable matching of biochar to soil constraints and application needs, a thorough understanding of the impact of biochar properties on relevant soil parameters is necessary. This meta-analysis of the available literature for the first time quantitatively assess the effect of not just biochar application, but different biochar properties on the full sets of key soil hydraulic parameters, i.e., the available water content (AWC), saturated hydraulic conductivity (Ksat), field capacity (FC), permanent wilting point (PWP) and total porosity (TP). The review shows that biochar increased soil water retention and decreased Ksat in sandy soils and increased Ksat and hence decreased runoff in clayey soils. On average, regardless of soil type, biochar application increased AWC (28.5%), FC (20.4%), PWP (16.7%) and TP (9.1%), while it reduced Ksat (38.7%) and BD (0.8%). Biochar was most effective in improving soil water properties in coarse-textured soils with application rates between 30 and 70 t/ha. The key factors influencing biochar performance were particle size, specific surface area and porosity indicating that both soil-biochar inter-particle and biochar intra-particle pores are important factors. To achieve optimum water relations in sandy soils (>60% sand and <20% clay), biochar with a small particle size (<2 mm) and high specific surface area and porosity should be applied. In clayey soil (>50% clay), <30 t/ha of a high surface area biochar is ideal.

    Original languageEnglish
    Article number136857
    JournalScience of the Total Environment
    Volume714
    DOIs
    Publication statusPublished - 20 Apr 2020

    Fingerprint

    Dive into the research topics of 'A meta-analysis on biochar's effects on soil water properties – New insights and future research challenges'. Together they form a unique fingerprint.

    Cite this