TY - JOUR
T1 - A method for unmixing magnetic hysteresis loops
AU - Heslop, David
AU - Roberts, Andrew P.
PY - 2012/3/1
Y1 - 2012/3/1
N2 - Hysteresis loops provide essential information concerning both induced and remanent magnetizations and are an important tool for characterizing magnetic mineral assemblages. Although the hysteresis behavior of mixed natural magnetic assemblages has been a focal point of much recent work, little progress has been made in unmixing of hysteresis loops into characteristic components. Unmixing strategies can act as cornerstones for interpretation of rock magnetic data and have become popular for characterizing isothermal remanent magnetization acquisition curves. Unmixing of hysteresis loops is, however, a challenging task because the individual component loops in the mixture must meet stringent shape constraints. We present a new technique for decomposing an ensemble of hysteresis loops into a small number of end-members based on linear mixing theory. The end-members are not based on type curves but instead are derived directly from the hysteresis data. Particular attention is paid to the form of the end-members, ensuring they meet the shape constraints expected for hysteresis loops of natural magnetic mineral assemblages. Marine sediments from the Southern Ocean and lake sediments from Butte Valley, northern California, provide case studies on which the proposed unmixing method is tested.
AB - Hysteresis loops provide essential information concerning both induced and remanent magnetizations and are an important tool for characterizing magnetic mineral assemblages. Although the hysteresis behavior of mixed natural magnetic assemblages has been a focal point of much recent work, little progress has been made in unmixing of hysteresis loops into characteristic components. Unmixing strategies can act as cornerstones for interpretation of rock magnetic data and have become popular for characterizing isothermal remanent magnetization acquisition curves. Unmixing of hysteresis loops is, however, a challenging task because the individual component loops in the mixture must meet stringent shape constraints. We present a new technique for decomposing an ensemble of hysteresis loops into a small number of end-members based on linear mixing theory. The end-members are not based on type curves but instead are derived directly from the hysteresis data. Particular attention is paid to the form of the end-members, ensuring they meet the shape constraints expected for hysteresis loops of natural magnetic mineral assemblages. Marine sediments from the Southern Ocean and lake sediments from Butte Valley, northern California, provide case studies on which the proposed unmixing method is tested.
UR - http://www.scopus.com/inward/record.url?scp=84858848385&partnerID=8YFLogxK
U2 - 10.1029/2011JB008859
DO - 10.1029/2011JB008859
M3 - Article
SN - 2169-9313
VL - 117
JO - Journal of Geophysical Research: Solid Earth
JF - Journal of Geophysical Research: Solid Earth
IS - 3
M1 - B03103
ER -