A new method for synthesizing test accuracy data outperformed the bivariate method

Luis Furuya-Kanamori, Polychronis Kostoulas, Suhail A.R. Doi*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    24 Citations (Scopus)

    Abstract

    Objectives: This study outlines the development of a new method (split component synthesis; SCS) for meta-analysis of diagnostic accuracy studies and assesses its performance against the commonly used bivariate random effects model. Methods: The SCS method summarizes the study-specific diagnostic odds ratio (on the ln(DOR) scale), which mainly reflects test discrimination rather than threshold effects, and then splits the summary ln(DOR) into its component parts, logit sensitivity (Se) and logit specificity (Sp). Performance of SCS estimator was assessed through simulation and compared against the bivariate random effects model estimator in terms of bias, mean squared error (MSE), and coverage probability across varying degrees of between-studies heterogeneity. Results: The SCS estimator for the DOR, Se, and Sp was less biased and had smaller MSE than the bivariate model estimator. Despite the wider width of the 95% confidence intervals under the bivariate model, the latter had a poorer coverage probability than that under the SCS method. Conclusion: The SCS estimator outperforms the bivariate model estimator and thus represents an improvement in the approach to diagnostic meta-analyses. The SCS method is available to researchers through the diagma module in Stata and the SCSmeta function in R.

    Original languageEnglish
    Pages (from-to)51-58
    Number of pages8
    JournalJournal of Clinical Epidemiology
    Volume132
    DOIs
    Publication statusPublished - Apr 2021

    Fingerprint

    Dive into the research topics of 'A new method for synthesizing test accuracy data outperformed the bivariate method'. Together they form a unique fingerprint.

    Cite this