A novel role for MNTB neuron dendrites in regulating action potential amplitude and cell excitability during repetitive firing

Richardson N. Leão, Ricardo M. Leão, Luciano F. Da Costa, S. Rock Levinson, Bruce Walmsley

    Research output: Contribution to journalArticlepeer-review

    14 Citations (Scopus)

    Abstract

    Principal cells of the medial nucleus of the trapezoid body (MNTB) are simple round neurons that receive a large excitatory synapse (the calyx of Held) and many small inhibitory synapses on the soma. Strangely, these neurons also possess one or two short tufted dendrites, whose function is unknown. Here we assess the role of these MNTB cell dendrites using patch-clamp recordings, imaging and immunohistochemistry techniques. Using outside-out patches and immunohistochemistry, we demonstrate the presence of dendritic Na+ channels. Current-clamp recordings show that tetrodotoxin applied onto dendrites impairs action potential (AP) firing. Using Na+ imaging, we show that the dendrite may serve to maintain AP amplitudes during high-frequency firing, as Na+ clearance in dendritic compartments is faster than axonal compartments. Prolonged high-frequency firing can diminish Na+ gradients in the axon while the dendritic gradient remains closer to resting conditions; therefore, the dendrite can provide additional inward current during prolonged firing. Using electron microscopy, we demonstrate that there are small excitatory synaptic boutons on dendrites. Multi-compartment MNTB cell simulations show that, with an active dendrite, dendritic excitatory postsynaptic currents (EPSCs) elicit delayed APs compared with calyceal EPSCs. Together with high- and low-threshold voltage-gated K+ currents, we suggest that the function of the MNTB dendrite is to improve high-fidelity firing, and our modelling results indicate that an active dendrite could contribute to a 'dual' firing mode for MNTB cells (an instantaneous response to calyceal inputs and a delayed response to non-calyceal dendritic excitatory postsynaptic potentials).

    Original languageEnglish
    Pages (from-to)3095-3108
    Number of pages14
    JournalEuropean Journal of Neuroscience
    Volume27
    Issue number12
    DOIs
    Publication statusPublished - Jun 2008

    Fingerprint

    Dive into the research topics of 'A novel role for MNTB neuron dendrites in regulating action potential amplitude and cell excitability during repetitive firing'. Together they form a unique fingerprint.

    Cite this