TY - JOUR
T1 - A novel role for MNTB neuron dendrites in regulating action potential amplitude and cell excitability during repetitive firing
AU - Leão, Richardson N.
AU - Leão, Ricardo M.
AU - Da Costa, Luciano F.
AU - Rock Levinson, S.
AU - Walmsley, Bruce
PY - 2008/6
Y1 - 2008/6
N2 - Principal cells of the medial nucleus of the trapezoid body (MNTB) are simple round neurons that receive a large excitatory synapse (the calyx of Held) and many small inhibitory synapses on the soma. Strangely, these neurons also possess one or two short tufted dendrites, whose function is unknown. Here we assess the role of these MNTB cell dendrites using patch-clamp recordings, imaging and immunohistochemistry techniques. Using outside-out patches and immunohistochemistry, we demonstrate the presence of dendritic Na+ channels. Current-clamp recordings show that tetrodotoxin applied onto dendrites impairs action potential (AP) firing. Using Na+ imaging, we show that the dendrite may serve to maintain AP amplitudes during high-frequency firing, as Na+ clearance in dendritic compartments is faster than axonal compartments. Prolonged high-frequency firing can diminish Na+ gradients in the axon while the dendritic gradient remains closer to resting conditions; therefore, the dendrite can provide additional inward current during prolonged firing. Using electron microscopy, we demonstrate that there are small excitatory synaptic boutons on dendrites. Multi-compartment MNTB cell simulations show that, with an active dendrite, dendritic excitatory postsynaptic currents (EPSCs) elicit delayed APs compared with calyceal EPSCs. Together with high- and low-threshold voltage-gated K+ currents, we suggest that the function of the MNTB dendrite is to improve high-fidelity firing, and our modelling results indicate that an active dendrite could contribute to a 'dual' firing mode for MNTB cells (an instantaneous response to calyceal inputs and a delayed response to non-calyceal dendritic excitatory postsynaptic potentials).
AB - Principal cells of the medial nucleus of the trapezoid body (MNTB) are simple round neurons that receive a large excitatory synapse (the calyx of Held) and many small inhibitory synapses on the soma. Strangely, these neurons also possess one or two short tufted dendrites, whose function is unknown. Here we assess the role of these MNTB cell dendrites using patch-clamp recordings, imaging and immunohistochemistry techniques. Using outside-out patches and immunohistochemistry, we demonstrate the presence of dendritic Na+ channels. Current-clamp recordings show that tetrodotoxin applied onto dendrites impairs action potential (AP) firing. Using Na+ imaging, we show that the dendrite may serve to maintain AP amplitudes during high-frequency firing, as Na+ clearance in dendritic compartments is faster than axonal compartments. Prolonged high-frequency firing can diminish Na+ gradients in the axon while the dendritic gradient remains closer to resting conditions; therefore, the dendrite can provide additional inward current during prolonged firing. Using electron microscopy, we demonstrate that there are small excitatory synaptic boutons on dendrites. Multi-compartment MNTB cell simulations show that, with an active dendrite, dendritic excitatory postsynaptic currents (EPSCs) elicit delayed APs compared with calyceal EPSCs. Together with high- and low-threshold voltage-gated K+ currents, we suggest that the function of the MNTB dendrite is to improve high-fidelity firing, and our modelling results indicate that an active dendrite could contribute to a 'dual' firing mode for MNTB cells (an instantaneous response to calyceal inputs and a delayed response to non-calyceal dendritic excitatory postsynaptic potentials).
KW - Active dendrite
KW - MNTB
KW - Repetitive firing
KW - Sodium currents
KW - Sodium imaging
UR - http://www.scopus.com/inward/record.url?scp=45349105427&partnerID=8YFLogxK
U2 - 10.1111/j.1460-9568.2008.06297.x
DO - 10.1111/j.1460-9568.2008.06297.x
M3 - Article
SN - 0953-816X
VL - 27
SP - 3095
EP - 3108
JO - European Journal of Neuroscience
JF - European Journal of Neuroscience
IS - 12
ER -