A physical basis for Krein's prediction formula

Brian D.O. Anderson*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

A prediction problem of the following variety is considered. A stationary random process w(·) of known spectrum is observed over |t|≤a. Using these observed values, w(b) is to be predicted for some b with |b|>a. We present a physical interpretation of a solution to this problem due to Krein, which used the theory of inverse Sturm-Liouville problems. Our physical model involves a nonuniform lossless transmission line excited at one end by white noise. The signal at the other end is the process w(t), and the prediction is found by calculating as intermediate quantities the voltage and current stored on the line at t=0. These quantities are spatially uncorrelated and provide a spatial representation at t=0 of the innovations of w(t) over |t|≤a.

Original languageEnglish
Pages (from-to)133-154
Number of pages22
JournalStochastic Processes and their Applications
Volume15
Issue number2
DOIs
Publication statusPublished - Jul 1983

Fingerprint

Dive into the research topics of 'A physical basis for Krein's prediction formula'. Together they form a unique fingerprint.

Cite this