A prospective future towards bio/medical technology and bioelectronics based on 2D vdWs heterostructures

Guru Prakash Neupane*, Linglong Zhang, Tanju Yildirim, Kai Zhou, Bowen Wang, Yilin Tang, Wendi Ma, Yunzhou Xue, Yuerui Lu

*Corresponding author for this work

    Research output: Contribution to journalReview articlepeer-review

    16 Citations (Scopus)

    Abstract

    Nano-biotechnology research has become extremely important due to the possibilities in manipulation and characterization of biological molecules through nanodevices. Nanomaterials exhibit exciting electrical, optoelectronic, magnetic, mechanical and chemical properties that can be exploited to develop efficient biosensors or bio-probes. Those unique properties in nanomaterials can also be used in bioimaging and cancer therapeutics, where biomolecules influence the inherent properties in nanomaterials. Effective manipulation of nanomaterial properties can lead to many breakthroughs in nanotechnology applications. Nowadays, 2D nanomaterials have emerged as viable materials for nanotechnology. Large cross-section area and functional availability of 2D or 1D quantum limit in these nanomaterials allow greater flexibility and better nanodevice performance. 2D nanomaterials enable advanced bioelectronics to be more easily integrated due to their atomic thickness, biocompatibility, mechanical flexibility and conformity. Furthermore, with the development of 2D material heterostructures, enhanced material properties can be obtained which can directly influence bio-nanotechnology applications. This article firstly reviews the development of various types of 2D heterostructures in a wide variety of nano-biotechnology applications. Furthermore, future 2D heterostructure scopes in bioimaging, nanomedicine, bio-markers/therapy and bioelectronics are discussed. This paper can be an avenue for providing a wide scope for 2D van der Waals (vdWs) heterostructures in bio- and medical fields. [Figure not available: see fulltext.].

    Original languageEnglish
    JournalNano Research
    Volume13
    Issue number1
    DOIs
    Publication statusPublished - 1 Jan 2020

    Fingerprint

    Dive into the research topics of 'A prospective future towards bio/medical technology and bioelectronics based on 2D vdWs heterostructures'. Together they form a unique fingerprint.

    Cite this