TY - JOUR
T1 - A radiative transfer model-based method for the estimation of grassland aboveground biomass
AU - Quan, Xingwen
AU - He, Binbin
AU - Yebra, Marta
AU - Yin, Changming
AU - Liao, Zhanmang
AU - Zhang, Xueting
AU - Li, Xing
N1 - Publisher Copyright:
© 2016 Elsevier B.V.
PY - 2017/2/1
Y1 - 2017/2/1
N2 - This paper presents a novel method to derive grassland aboveground biomass (AGB) based on the PROSAILH (PROSPECT + SAILH) radiative transfer model (RTM). Two variables, leaf area index (LAI, m2m−2, defined as a one-side leaf area per unit of horizontal ground area) and dry matter content (DMC, gcm−2, defined as the dry matter per leaf area), were retrieved using PROSAILH and reflectance data from Landsat 8 OLI product. The result of LAI × DMC was regarded as the estimated grassland AGB according to their definitions. The well-known ill-posed inversion problem when inverting PROSAILH was alleviated using ecological criteria to constrain the simulation scenario and therefore the number of simulated spectra. A case study of the presented method was applied to a plateau grassland in China to estimate its AGB. The results were compared to those obtained using an exponential regression, a partial least squares regression (PLSR) and an artificial neural networks (ANN). The RTM-based method offered higher accuracy (R2 = 0.64 and RMSE = 42.67 gm−2) than the exponential regression (R2 = 0.48 and RMSE = 41.65 gm−2) and the ANN (R2 = 0.43 and RMSE = 46.26 gm−2). However, the proposed method offered similar performance than PLSR as presented better determination coefficient than PLSR (R2 = 0.55) but higher RMSE (RMSE = 37.79 gm−2). Although it is still necessary to test these methodologies in other areas, the RTM-based method offers greater robustness and reproducibility to estimate grassland AGB at large scale without the need to collect field measurements and therefore is considered the most promising methodology.
AB - This paper presents a novel method to derive grassland aboveground biomass (AGB) based on the PROSAILH (PROSPECT + SAILH) radiative transfer model (RTM). Two variables, leaf area index (LAI, m2m−2, defined as a one-side leaf area per unit of horizontal ground area) and dry matter content (DMC, gcm−2, defined as the dry matter per leaf area), were retrieved using PROSAILH and reflectance data from Landsat 8 OLI product. The result of LAI × DMC was regarded as the estimated grassland AGB according to their definitions. The well-known ill-posed inversion problem when inverting PROSAILH was alleviated using ecological criteria to constrain the simulation scenario and therefore the number of simulated spectra. A case study of the presented method was applied to a plateau grassland in China to estimate its AGB. The results were compared to those obtained using an exponential regression, a partial least squares regression (PLSR) and an artificial neural networks (ANN). The RTM-based method offered higher accuracy (R2 = 0.64 and RMSE = 42.67 gm−2) than the exponential regression (R2 = 0.48 and RMSE = 41.65 gm−2) and the ANN (R2 = 0.43 and RMSE = 46.26 gm−2). However, the proposed method offered similar performance than PLSR as presented better determination coefficient than PLSR (R2 = 0.55) but higher RMSE (RMSE = 37.79 gm−2). Although it is still necessary to test these methodologies in other areas, the RTM-based method offers greater robustness and reproducibility to estimate grassland AGB at large scale without the need to collect field measurements and therefore is considered the most promising methodology.
KW - Grassland aboveground biomass
KW - Ill-posed inversion problem
KW - Landsat 8 OLI product
KW - Leaf area index
KW - PROSAILH
UR - http://www.scopus.com/inward/record.url?scp=85018630181&partnerID=8YFLogxK
U2 - 10.1016/j.jag.2016.10.002
DO - 10.1016/j.jag.2016.10.002
M3 - Article
SN - 1569-8432
VL - 54
SP - 159
EP - 168
JO - International Journal of Applied Earth Observation and Geoinformation
JF - International Journal of Applied Earth Observation and Geoinformation
ER -