A rate study of Type Ia supernovae with Subaru/XMM-Newton Deep Survey

Yutaka Ihara, Mamoru Doi, Tomoki Morokuma, Raynald Pain, Naohiro Takanashi, Naoki Yasuda, Greg Aldering, Kyle Dawson, Gerson Goldhaber, Isobel Hook, Chris Lidman, Saul Perlmutter, Anthony Spadafora, Nao Suzuki, Lifan Wang

Research output: Contribution to journalArticlepeer-review

Abstract

We present a measurement of the rate of high-z Type Ia supernovae (SNe Ia) using multi-epoch observations of Subaru/XMM-Newton Deep Field (SXDF) with Suprime-Cam on the Subaru Telescope. Although SNe Ia are regarded as a standard candle, progenitor systems of SNe Ia have not been resolved yet. One of the key parameters to show the progenitor systems by observations is the delay time distribution between the binary system formation and subsequent SN explosion. Recently, a wide range of delay time is studied by SN Ia rates compared with an assumed cosmic star formation history. If SNe Ia with short delay time are dominant, the cosmic SN Ia rate evolution should closely trace that of the cosmic star formation. In order to detect a lot of high-z SNe Ia and measure SN Ia rates, we repeatedly carried out wide and deep imaging observations in the i'-band with Suprime-Cam in 2002 (FoV∼1 deg2, mi < 25.5 mag). We obtained detailed light curves of the variable objects, and 50 objects are classified as SNe Ia using the light curve fitting method at the redshift range of 0.2 < z < 1.3. In order to check the completeness and contamination of the light curve classification method, we performed Monte Carlo simulations and generated ∼100,000 light curves of SNe Ia and II from templates. The control time and detection efficiency of the SN survey are also calculated using the artificial light curves. We derived an increasing trend of rates at around z ∼ 1.2. Our results are almost consistent with other SN Ia rate results from low-z to high-z. Our results are the first results of high-z SN Ia rates with large statistics using light curves obtained by ground based telescopes, and give us visions of the SN rate studies for the future.

Original languageEnglish
Pages (from-to)358-361
Number of pages4
JournalProceedings of the International Astronomical Union
Volume5
Issue numberS262
DOIs
Publication statusPublished - Aug 2009

Fingerprint

Dive into the research topics of 'A rate study of Type Ia supernovae with Subaru/XMM-Newton Deep Survey'. Together they form a unique fingerprint.

Cite this