TY - JOUR
T1 - A re-assessment of the oxidation state of iron in MORB glasses
AU - Berry, Andrew J.
AU - Stewart, Glen A.
AU - O'Neill, Hugh St C.
AU - Mallmann, Guilherme
AU - Mosselmans, J. Fred W.
N1 - Publisher Copyright:
© 2017
PY - 2018/2/1
Y1 - 2018/2/1
N2 - The oxidation state of Fe, Fe/3+ΣFe (where ΣFe=Fe2++Fe3+), in glass samples of mid-ocean ridge basalt (MORB), from a wide range of localities, was determined by XANES spectroscopy to be 0.10(2) (n=42). This value is lower than that reported previously by XANES, 0.16(1) (n=103), but consistent with the most recent value determined by redox titrations, 0.11(2) (n=104), all for similar sets of samples. We attribute the anomalously high XANES value of 0.16 to a calibration error resulting from the interpretation of Mössbauer spectra and the resulting Fe/3+ΣFe values of the standards. Our alternative interpretation removes the problem of resolving Fe/3+ΣFe values <∼0.1 in basaltic glasses, produces isomer shift and quadrupole splitting values for Fe3+ that are independent of Fe3+/ΣFe (as is the case for Fe2+), and gives Fe/3+ΣFe values that are consistent with the thermodynamically expected dependence on oxygen fugacity (fO2). Fe/3+Fe2+ is related to fO2 for our synthetic MORB composition by the temperature independent expression ΔQFM=4log(Fe3+/Fe2+)+4.23(5), where ΔQFM is the fO2 in log units relative to the quartz–fayalite–magnetite buffer. The average fO2 of natural MORB was estimated to be QFM+0.1.
AB - The oxidation state of Fe, Fe/3+ΣFe (where ΣFe=Fe2++Fe3+), in glass samples of mid-ocean ridge basalt (MORB), from a wide range of localities, was determined by XANES spectroscopy to be 0.10(2) (n=42). This value is lower than that reported previously by XANES, 0.16(1) (n=103), but consistent with the most recent value determined by redox titrations, 0.11(2) (n=104), all for similar sets of samples. We attribute the anomalously high XANES value of 0.16 to a calibration error resulting from the interpretation of Mössbauer spectra and the resulting Fe/3+ΣFe values of the standards. Our alternative interpretation removes the problem of resolving Fe/3+ΣFe values <∼0.1 in basaltic glasses, produces isomer shift and quadrupole splitting values for Fe3+ that are independent of Fe3+/ΣFe (as is the case for Fe2+), and gives Fe/3+ΣFe values that are consistent with the thermodynamically expected dependence on oxygen fugacity (fO2). Fe/3+Fe2+ is related to fO2 for our synthetic MORB composition by the temperature independent expression ΔQFM=4log(Fe3+/Fe2+)+4.23(5), where ΔQFM is the fO2 in log units relative to the quartz–fayalite–magnetite buffer. The average fO2 of natural MORB was estimated to be QFM+0.1.
KW - Fe/Fe
KW - MORB
KW - Mössbauer spectroscopy
KW - XANES spectroscopy
KW - oxygen fugacity
UR - http://www.scopus.com/inward/record.url?scp=85038420468&partnerID=8YFLogxK
U2 - 10.1016/j.epsl.2017.11.032
DO - 10.1016/j.epsl.2017.11.032
M3 - Article
SN - 0012-821X
VL - 483
SP - 114
EP - 123
JO - Earth and Planetary Science Letters
JF - Earth and Planetary Science Letters
ER -