TY - JOUR
T1 - A real-world vision system
T2 - Mechanism, control, and vision processing
AU - Dankers, Andrew
AU - Zelinsky, Alexander
PY - 2003
Y1 - 2003
N2 - This paper reports on the development of a multi-purpose active visual sensor system for real-world application. The Cable-Drive Active-Vision Robot (CeDAR) has been designed for use on a diverse range of platforms, to perform a diverse range of tasks. The novel, biologically inspired design has evolved from a systems based approach. The mechanism is compact and light-weight, and is capable of motions that exceed human visual performance and earlier mechanical designs. The control system complements the mechanical design to implement the basic visual behaviours of fixation, smooth pursuit and saccade, with stability during high speed motions, high precision and repeatability. Real-time vision processing algorithms have been developed that process stereo colour images at 30Hz, resulting in a suite of basic visual competencies. We have developed a scheme to fuse the results of the visual algorithms into robust task-oriented behaviours by adopting a statistical frame-work. CeDAR has been successfully used for experiments in autonomous vehicle guidance, object tracking, and visual sensing for mobile robot experiments.
AB - This paper reports on the development of a multi-purpose active visual sensor system for real-world application. The Cable-Drive Active-Vision Robot (CeDAR) has been designed for use on a diverse range of platforms, to perform a diverse range of tasks. The novel, biologically inspired design has evolved from a systems based approach. The mechanism is compact and light-weight, and is capable of motions that exceed human visual performance and earlier mechanical designs. The control system complements the mechanical design to implement the basic visual behaviours of fixation, smooth pursuit and saccade, with stability during high speed motions, high precision and repeatability. Real-time vision processing algorithms have been developed that process stereo colour images at 30Hz, resulting in a suite of basic visual competencies. We have developed a scheme to fuse the results of the visual algorithms into robust task-oriented behaviours by adopting a statistical frame-work. CeDAR has been successfully used for experiments in autonomous vehicle guidance, object tracking, and visual sensing for mobile robot experiments.
UR - http://www.scopus.com/inward/record.url?scp=27744562832&partnerID=8YFLogxK
U2 - 10.1007/3-540-36592-3_22
DO - 10.1007/3-540-36592-3_22
M3 - Article
AN - SCOPUS:27744562832
SN - 0302-9743
VL - 2626
SP - 223
EP - 235
JO - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
JF - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ER -