TY - JOUR

T1 - A Riemannian approach to graph embedding

AU - Robles-Kelly, Antonio

AU - Hancock, Edwin R.

PY - 2007/3

Y1 - 2007/3

N2 - In this paper, we make use of the relationship between the Laplace-Beltrami operator and the graph Laplacian, for the purposes of embedding a graph onto a Riemannian manifold. To embark on this study, we review some of the basics of Riemannian geometry and explain the relationship between the Laplace-Beltrami operator and the graph Laplacian. Using the properties of Jacobi fields, we show how to compute an edge-weight matrix in which the elements reflect the sectional curvatures associated with the geodesic paths on the manifold between nodes. For the particular case of a constant sectional curvature surface, we use the Kruskal coordinates to compute edge weights that are proportional to the geodesic distance between points. We use the resulting edge-weight matrix to embed the nodes of the graph onto a Riemannian manifold. To do this, we develop a method that can be used to perform double centring on the Laplacian matrix computed from the edge-weights. The embedding coordinates are given by the eigenvectors of the centred Laplacian. With the set of embedding coordinates at hand, a number of graph manipulation tasks can be performed. In this paper, we are primarily interested in graph-matching. We recast the graph-matching problem as that of aligning pairs of manifolds subject to a geometric transformation. We show that this transformation is Pro-crustean in nature. We illustrate the utility of the method on image matching using the COIL database.

AB - In this paper, we make use of the relationship between the Laplace-Beltrami operator and the graph Laplacian, for the purposes of embedding a graph onto a Riemannian manifold. To embark on this study, we review some of the basics of Riemannian geometry and explain the relationship between the Laplace-Beltrami operator and the graph Laplacian. Using the properties of Jacobi fields, we show how to compute an edge-weight matrix in which the elements reflect the sectional curvatures associated with the geodesic paths on the manifold between nodes. For the particular case of a constant sectional curvature surface, we use the Kruskal coordinates to compute edge weights that are proportional to the geodesic distance between points. We use the resulting edge-weight matrix to embed the nodes of the graph onto a Riemannian manifold. To do this, we develop a method that can be used to perform double centring on the Laplacian matrix computed from the edge-weights. The embedding coordinates are given by the eigenvectors of the centred Laplacian. With the set of embedding coordinates at hand, a number of graph manipulation tasks can be performed. In this paper, we are primarily interested in graph-matching. We recast the graph-matching problem as that of aligning pairs of manifolds subject to a geometric transformation. We show that this transformation is Pro-crustean in nature. We illustrate the utility of the method on image matching using the COIL database.

KW - Combinatorial Laplacian

KW - Graph embedding

KW - Riemannian geometry

UR - http://www.scopus.com/inward/record.url?scp=33751031562&partnerID=8YFLogxK

U2 - 10.1016/j.patcog.2006.05.031

DO - 10.1016/j.patcog.2006.05.031

M3 - Article

SN - 0031-3203

VL - 40

SP - 1042

EP - 1056

JO - Pattern Recognition

JF - Pattern Recognition

IS - 3

ER -