A robust continuous time fixed lag smoother for nonlinear uncertain systems

Obaid Ur Rehman, Ian R. Petersen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This paper presents a robust fixed lag smoother for a class of nonlinear uncertain systems. A unified scheme, which combines a nonlinear robust estimator with a stable fixed lag smoother, is presented to improve the error covariance of the estimation. The robust fixed lag smoother is based on the use of Integral Quadratic Constraints and minimax LQG control. The state estimator uses a copy of the system nonlinearity in the estimator and combines an approximate model of the delayed states to produce a smoothed signal. In order to see the effectiveness of the method, it is applied to a quantum optical phase estimation problem. Results show significant improvement in the error covariance of the estimator using fixed lag smoother in the presence of nonlinear uncertainty.

Original languageEnglish
Title of host publication2013 IEEE 52nd Annual Conference on Decision and Control, CDC 2013
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3750-3755
Number of pages6
ISBN (Print)9781467357173
DOIs
Publication statusPublished - 2013
Externally publishedYes
Event52nd IEEE Conference on Decision and Control, CDC 2013 - Florence, Italy
Duration: 10 Dec 201313 Dec 2013

Publication series

NameProceedings of the IEEE Conference on Decision and Control
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370

Conference

Conference52nd IEEE Conference on Decision and Control, CDC 2013
Country/TerritoryItaly
CityFlorence
Period10/12/1313/12/13

Fingerprint

Dive into the research topics of 'A robust continuous time fixed lag smoother for nonlinear uncertain systems'. Together they form a unique fingerprint.

Cite this