TY - GEN
T1 - A scalable jointree algorithm for diagnosability
AU - Schumann, Anika
AU - Huang, Jinbo
PY - 2008
Y1 - 2008
N2 - Diagnosability is an essential property that determines how accurate any diagnostic reasoning can be on a system given any sequence of observations. An unobservable fault event in a discrete-event system is diagnosable iff its occurrence can always be deduced once sufficiently many subsequent observable events have occurred. A classical approach to diagnosability checking constructs a finite state machine known as a twin plant for the system, which has a critical path iff some fault event is not diagnosable. Recent work attempts to avoid the often impractical construction of the global twin plant by exploiting system structure. Specifically, local twin plants are constructed for components of the system, and synchronized with each other until diagnosability is decided. Unfortunately, synchronization of twin plants can remain a bottleneck for large systems; in the worst case, in particular, all local twin plants would be synchronized, again producing the global twin plant. We solve the diagnosability problem in a way that exploits the distributed nature of realistic systems. In our algorithm consistency among twin plants is achieved by message passing on a jointree. Scalability is significantly improved as the messages computed are generally much smaller than the synchronized product of the twin plants involved. Moreover we use an iterative procedure to search for a subset of the jointree that is sufficient to decide diagnosability. Finally, our algorithm is scalable in practice: it provides an approximate and useful solution if the computational resources are not sufficient.
AB - Diagnosability is an essential property that determines how accurate any diagnostic reasoning can be on a system given any sequence of observations. An unobservable fault event in a discrete-event system is diagnosable iff its occurrence can always be deduced once sufficiently many subsequent observable events have occurred. A classical approach to diagnosability checking constructs a finite state machine known as a twin plant for the system, which has a critical path iff some fault event is not diagnosable. Recent work attempts to avoid the often impractical construction of the global twin plant by exploiting system structure. Specifically, local twin plants are constructed for components of the system, and synchronized with each other until diagnosability is decided. Unfortunately, synchronization of twin plants can remain a bottleneck for large systems; in the worst case, in particular, all local twin plants would be synchronized, again producing the global twin plant. We solve the diagnosability problem in a way that exploits the distributed nature of realistic systems. In our algorithm consistency among twin plants is achieved by message passing on a jointree. Scalability is significantly improved as the messages computed are generally much smaller than the synchronized product of the twin plants involved. Moreover we use an iterative procedure to search for a subset of the jointree that is sufficient to decide diagnosability. Finally, our algorithm is scalable in practice: it provides an approximate and useful solution if the computational resources are not sufficient.
UR - http://www.scopus.com/inward/record.url?scp=57749172695&partnerID=8YFLogxK
M3 - Conference contribution
SN - 9781577353683
T3 - Proceedings of the National Conference on Artificial Intelligence
SP - 535
EP - 540
BT - AAAI-08/IAAI-08 Proceedings - 23rd AAAI Conference on Artificial Intelligence and the 20th Innovative Applications of Artificial Intelligence Conference
T2 - 23rd AAAI Conference on Artificial Intelligence and the 20th Innovative Applications of Artificial Intelligence Conference, AAAI-08/IAAI-08
Y2 - 13 July 2008 through 17 July 2008
ER -