A Simple Route to Strong Carbon-13 NMR Signals Detectable for Several Minutes

Soumya S. Roy, Philip Norcott, Peter J. Rayner, Gary G.R. Green, Simon B. Duckett*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

32 Citations (Scopus)

Abstract

Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) suffer from low sensitivity and limited nuclear spin memory lifetimes. Although hyperpolarization techniques increase sensitivity, there is also a desire to increase relaxation times to expand the range of applications addressable by these methods. Here, we demonstrate a route to create hyperpolarized magnetization in 13C nuclear spin pairs that last much longer than normal lifetimes by storage in a singlet state. By combining molecular design and low-field storage with para-hydrogen derived hyperpolarization, we achieve more than three orders of signal amplification relative to equilibrium Zeeman polarization and an order of magnitude extension in state lifetime. These studies use a range of specifically synthesized pyridazine derivatives and dimethyl p-tolyl phenyl pyridazine is the most successful, achieving a lifetime of about 190 s in low-field, which leads to a 13C-signal that is visible for 10 minutes.

Original languageEnglish
Pages (from-to)10496-10500
Number of pages5
JournalChemistry - A European Journal
Volume23
Issue number44
DOIs
Publication statusPublished - 4 Aug 2017
Externally publishedYes

Fingerprint

Dive into the research topics of 'A Simple Route to Strong Carbon-13 NMR Signals Detectable for Several Minutes'. Together they form a unique fingerprint.

Cite this