Abstract
A theoretical model for surface bone remodeling under electromagnetic loads is proposed in this paper. In the model, surface bone remodeling is assumed to be related to growth factors. Growth factors in latent form in osteocytes are released to the bone fluid after the osteocytes are absorbed by osteoclasts, and then regulate the bone formation process. At the same time, environmental loadings can influence the generation of growth factors. This paper shows how surface bone remodeling is triggered under the influence of growth factors. Based on this hypothesis, a computational model is established that simulates the bone coupling remodeling process, including internal and surface bone remodeling. The effects of various loadings, including electrical and magnetic loadings, are simulated and compared. The interactions between internal and surface bone remodeling are investigated via the numerical method. The results indicate that an electromagnetic field can strongly influence the bone remodeling process and that the remodeling process will be altered after surface bone remodeling is triggered, compared to the sole effect of the internal remodeling process.
Original language | English |
---|---|
Pages (from-to) | 163-175 |
Number of pages | 13 |
Journal | Archive of Applied Mechanics |
Volume | 78 |
Issue number | 3 |
DOIs | |
Publication status | Published - Mar 2008 |