TY - JOUR
T1 - Aboveground interactions and productivity in mixed-species plantations of Acacia mearnsii and Eucalyptus globulus
AU - Bauhus, Jürgen
AU - Van Winden, Aaron P.
AU - Nicotra, Adrienne B.
PY - 2004/3
Y1 - 2004/3
N2 - This study compared productivity in mixed-species plantations of Eucalyptus globulus ssp. pseudoglobulus (Naudin ex Maiden) Kirkpatr. and Acacia mearnsii de Wild with pure stands of each species and investigated how this might be explained by canopy stratification between species and changes in leaf characteristics of eucalypts. Investigations were carried out at a trial using the replacement series design, which consisted of the following combinations: 100% eucalypts (100%E), 75% eucalypts + 25% acacia (75%E:25%A), 50% eucalypts + 50% acacia (50%E:50%A), 25% eucalypts + 75% acacia (25%E:75%A), and 100% acacia (100%A). At 9.5 years, stem volume and biomass were highest in 50%E:50%A treatments. Canopy stratification occurred in all mixtures, with acacias in the lower and eucalypts in the upper canopy stratum. This and the increasing canopy light interception with increasing proportion of acacia in the mixture indicated that A. mearnsii is substantially more shade tolerant than E. globulus. Midcanopy foliage of E. globulus in the 50%E:50%A mixture had higher foliage nitrogen (N) but lower phosphorus (P) concentrations and lower light-saturated net photosynthesis rates (Amax) than those in the 100%E treatment. In addition, similar relationships between eucalypt crown volume and stem biomass across treatments indicated that eucalypt crowns were not more efficient in mixture. Our study indicates that the productivity gains in these mixtures may be partially attributable to aboveground niche separation between species.
AB - This study compared productivity in mixed-species plantations of Eucalyptus globulus ssp. pseudoglobulus (Naudin ex Maiden) Kirkpatr. and Acacia mearnsii de Wild with pure stands of each species and investigated how this might be explained by canopy stratification between species and changes in leaf characteristics of eucalypts. Investigations were carried out at a trial using the replacement series design, which consisted of the following combinations: 100% eucalypts (100%E), 75% eucalypts + 25% acacia (75%E:25%A), 50% eucalypts + 50% acacia (50%E:50%A), 25% eucalypts + 75% acacia (25%E:75%A), and 100% acacia (100%A). At 9.5 years, stem volume and biomass were highest in 50%E:50%A treatments. Canopy stratification occurred in all mixtures, with acacias in the lower and eucalypts in the upper canopy stratum. This and the increasing canopy light interception with increasing proportion of acacia in the mixture indicated that A. mearnsii is substantially more shade tolerant than E. globulus. Midcanopy foliage of E. globulus in the 50%E:50%A mixture had higher foliage nitrogen (N) but lower phosphorus (P) concentrations and lower light-saturated net photosynthesis rates (Amax) than those in the 100%E treatment. In addition, similar relationships between eucalypt crown volume and stem biomass across treatments indicated that eucalypt crowns were not more efficient in mixture. Our study indicates that the productivity gains in these mixtures may be partially attributable to aboveground niche separation between species.
UR - http://www.scopus.com/inward/record.url?scp=2942720826&partnerID=8YFLogxK
U2 - 10.1139/x03-243
DO - 10.1139/x03-243
M3 - Article
SN - 0045-5067
VL - 34
SP - 686
EP - 694
JO - Canadian Journal of Forest Research
JF - Canadian Journal of Forest Research
IS - 3
ER -