Abstract
Although the electrocatalytic nitrate reduction reaction (NO3−RR) is an attractive NH3 synthesis route, it suffers from low yield due to the lack of efficient catalysts. Here, this work reports a novel grain boundary (GB)-rich Sn-Cu catalyst, derived from in situ electroreduction of Sn-doped CuO nanoflower, for effectively electrochemical converting NO3− to NH3. The optimized Sn1%-Cu electrode achieves a high NH3 yield rate of 1.98 mmol h−1 cm−2 with an industrial-level current density of −425 mA cm−2 at −0.55 V versus a reversible hydrogen electrode (RHE) and a maximum Faradaic efficiency of 98.2% at −0.51 V versus RHE, outperforming the pure Cu electrode. In situ Raman and attenuated total reflection Fourier transform infrared spectroscopies reveal the reaction pathway of NO3−RR to NH3 by monitoring the adsorption property of reaction intermediates. Density functional theory calculations clarify that the high-density GB active sites and the competitive hydrogen evolution reaction (HER) suppression induced by Sn doping synergistically promote highly active and selective NH3 synthesis from NO3−RR. This work paves an avenue for efficient NH3 synthesis over Cu catalyst by in situ reconstruction of GB sites with heteroatom doping.
Original language | English |
---|---|
Article number | 2302295 |
Journal | Small |
Volume | 19 |
Issue number | 26 |
DOIs | |
Publication status | Published - 28 Jun 2023 |