Accelerating the simulation of annual bifacial illumination of real photovoltaic systems with ray tracing

Marco Ernst*, Georgia E.J. Conechado, Charles Alexis Asselineau

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    15 Citations (Scopus)

    Abstract

    Accurate modeling of bifacial illumination is critical to improve the prediction of the energy yield of bifacial solar systems. Monte Carlo ray tracing is the most powerful tool to accomplish this task. In this work, we accelerate Monte Carlo ray tracing of large solar systems by nearly 90%. Our model achieves root-mean-square error values of 7.9% and 37.2% for the front and rear irradiance compared against single-axis tracking field reference data, respectively. The rear irradiance modeling error decreases to 18.9% if suspected snow periods are excluded. Crucially, our full system simulations show that surrounding ground surfaces affect the rear irradiance deep into the system. Therefore, unit system simulations cannot necessarily ignore the influence of the perimeter of large installations to accurately estimate annual yield. Large-scale simulations involving high-performance supercomputing were necessary to investigate these effects accurately, calibrate our simplified models, and validate our results against experimental measurements.

    Original languageEnglish
    Article number103698
    JournaliScience
    Volume25
    Issue number1
    DOIs
    Publication statusPublished - 21 Jan 2022

    Fingerprint

    Dive into the research topics of 'Accelerating the simulation of annual bifacial illumination of real photovoltaic systems with ray tracing'. Together they form a unique fingerprint.

    Cite this