Abstract
The promotion of tumour metastasis by platelets may occur through several mechanisms including the induction of a more metastatic phenotype in tumour cells and assisted extravasation of circulating tumour cells. Whilst the mechanisms underlying platelet-assisted extravasation have been extensively studied, much less attention has been paid to the mechanisms underlying platelet promotion of an aggressive phenotype within a tumour cell population. Herein, we demonstrate in vitro that MDA-MB-231 breast carcinoma cells incubated with washed thrombin-activated platelet membranes adopt a Matrigel-degrading phenotype in a dose- and contact time-dependent manner. The same phenotypic change was observed with three other human tumour cell lines of diverse anatomical origin. Moreover, tumour cell lines that had been cultured with washed thrombin-activated platelet membranes had a greater metastatic capacity when injected into mice. This in vivo effect was reliant upon a co-incubation period of >2 h implying a mechanism involving more than platelet membrane binding that occurred within 5 min. Upon further investigation it was found that simultaneous blocking of the platelet-membrane proteins P-selectin and GPIIb/IIIa prevented interactions between platelet membranes and MDA-MB-231 cells but also significantly reduced the ability of tumour cells to degrade Matrigel. These results confirm that platelets induce a more aggressive phenotype in tumour cells but also identify the platelet proteins involved in this effect. P-selectin and GPIIb/IIIa also play a role in assisting tumour cell extravasation and, thus, are ideal targets for the therapeutic intervention of both stages of platelet-assisted metastasis.
Original language | English |
---|---|
Pages (from-to) | 495-505 |
Number of pages | 11 |
Journal | Clinical and Experimental Metastasis |
Volume | 32 |
Issue number | 5 |
DOIs | |
Publication status | Published - 10 Jun 2015 |