TY - GEN
T1 - Active attack on user load achieving pilot design in massive MIMO networks
AU - Akbar, Noman
AU - Yan, Shihao
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/7/2
Y1 - 2017/7/2
N2 - In this paper, we propose an active attacking strategy on a massive multiple-input multiple- output (MIMO) network, where the pilot sequences are obtained using the user load-achieving pilot sequence design. The user load-achieving design ensures that the signal-to-interference-plus-noise ratio (SINR) requirements of all the users in the massive MIMO networks are guaranteed even in the presence of pilot contamination. However, this design has some vulnerabilities, such as one known pilot sequence and the correlation among the pilot sequences, that may be exploited by active attackers. In this work, we first identify the potential vulnerabilities in the user load- achieving pilot sequence design and then, accordingly, develop an active attacking strategy on the network. In the proposed attacking strategy, the active attackers transmit known pilot sequences in the uplink training and artificial noise in the downlink data transmission. Our examination demonstrates that the per-cell user load region is significantly reduced by the proposed attacking strategy. As a result of the reduced per-cell user load region, the SINR requirements of all the users are no longer guaranteed in the presence of the active attackers. Specifically, for the worst affected users the SINR requirements may not be ensured even with infinite antennas at the base station.
AB - In this paper, we propose an active attacking strategy on a massive multiple-input multiple- output (MIMO) network, where the pilot sequences are obtained using the user load-achieving pilot sequence design. The user load-achieving design ensures that the signal-to-interference-plus-noise ratio (SINR) requirements of all the users in the massive MIMO networks are guaranteed even in the presence of pilot contamination. However, this design has some vulnerabilities, such as one known pilot sequence and the correlation among the pilot sequences, that may be exploited by active attackers. In this work, we first identify the potential vulnerabilities in the user load- achieving pilot sequence design and then, accordingly, develop an active attacking strategy on the network. In the proposed attacking strategy, the active attackers transmit known pilot sequences in the uplink training and artificial noise in the downlink data transmission. Our examination demonstrates that the per-cell user load region is significantly reduced by the proposed attacking strategy. As a result of the reduced per-cell user load region, the SINR requirements of all the users are no longer guaranteed in the presence of the active attackers. Specifically, for the worst affected users the SINR requirements may not be ensured even with infinite antennas at the base station.
UR - http://www.scopus.com/inward/record.url?scp=85050541744&partnerID=8YFLogxK
U2 - 10.1109/GLOCOMW.2017.8269223
DO - 10.1109/GLOCOMW.2017.8269223
M3 - Conference contribution
T3 - 2017 IEEE Globecom Workshops, GC Wkshps 2017 - Proceedings
SP - 1
EP - 6
BT - 2017 IEEE Globecom Workshops, GC Wkshps 2017 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2017 IEEE Global Telecommunications Conference, GC 2017
Y2 - 4 December 2017 through 8 December 2017
ER -