TY - GEN
T1 - Active constrained clustering via non-iterative uncertainty sampling
AU - Stanitsas, Panagiotis
AU - Cherian, Anoop
AU - Morellas, Vassilios
AU - Papanikolopoulos, Nikolaos
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/11/28
Y1 - 2016/11/28
N2 - Active Constraint Learning (ACL) is continuously gaining popularity in the area of constrained clustering due to its ability to achieve performance gains via incorporating minimal feedback from a human annotator for selected instances. For constrained clustering algorithms, such instances are integrated in the form of Must-Link (ML) and Cannot-Link (CL) constraints. Existing iterative uncertainty reduction schemes, introduce high computational burden particularly when they process larger datasets that are usually present in computer vision and visual learning applications. For scenarios that multiple agents (i.e., robots) require user feedback for performing recognition tasks, minimizing the interaction between the user and the agents, without compromising performance, is an essential task. In this study, a non-iterative ACL scheme with proven performance benefits is presented. We select to demonstrate the effectiveness of our methodology by building on the well known K-Means algorithm for clustering; one can easily extend it to alternative clustering schemes. The proposed methodology introduces the use of the Silhouette values, conventionally used for measuring clustering performance, in order to rank the degree of information content of the various samples. In addition, an efficient greedy selection scheme was devised for selecting the most informative samples for human annotation. To the best of our knowledge, this is the first active constrained clustering methodology with the ability to process computer vision datasets that this study targets. Performance results are shown on various computer vision benchmarks and support the merits of adopting the proposed scheme.
AB - Active Constraint Learning (ACL) is continuously gaining popularity in the area of constrained clustering due to its ability to achieve performance gains via incorporating minimal feedback from a human annotator for selected instances. For constrained clustering algorithms, such instances are integrated in the form of Must-Link (ML) and Cannot-Link (CL) constraints. Existing iterative uncertainty reduction schemes, introduce high computational burden particularly when they process larger datasets that are usually present in computer vision and visual learning applications. For scenarios that multiple agents (i.e., robots) require user feedback for performing recognition tasks, minimizing the interaction between the user and the agents, without compromising performance, is an essential task. In this study, a non-iterative ACL scheme with proven performance benefits is presented. We select to demonstrate the effectiveness of our methodology by building on the well known K-Means algorithm for clustering; one can easily extend it to alternative clustering schemes. The proposed methodology introduces the use of the Silhouette values, conventionally used for measuring clustering performance, in order to rank the degree of information content of the various samples. In addition, an efficient greedy selection scheme was devised for selecting the most informative samples for human annotation. To the best of our knowledge, this is the first active constrained clustering methodology with the ability to process computer vision datasets that this study targets. Performance results are shown on various computer vision benchmarks and support the merits of adopting the proposed scheme.
KW - Active constrained clustering
KW - Image clustering uncertainty management
KW - Visual learning
UR - http://www.scopus.com/inward/record.url?scp=85006507955&partnerID=8YFLogxK
U2 - 10.1109/IROS.2016.7759593
DO - 10.1109/IROS.2016.7759593
M3 - Conference contribution
T3 - IEEE International Conference on Intelligent Robots and Systems
SP - 4027
EP - 4033
BT - IROS 2016 - 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2016
Y2 - 9 October 2016 through 14 October 2016
ER -