Active vaccination against IL-5 bypasses immunological tolerance and ameliorates experimental asthma

M. Hertz, S. Mahalingam, I. Dalum, S. Klysner, J. Mattes, A. Neisig, S. Mouritsen, P. S. Foster, A. Gautam*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

78 Citations (Scopus)

Abstract

Current therapeutic approaches to asthma have had limited impact on the clinical management and resolution of this disorder. By using a novel vaccine strategy targeting the inflammatory cytokine IL-5, we have ameliorated hallmark features of asthma in mouse models. Delivery of a DNA vaccine encoding murine IL-5 modified to contain a promiscuous foreign Th epitope bypasses B cell tolerance to IL-5 and induces neutralizing polyclonal anti-IL-5 Abs. Active vaccination against IL-5 reduces airways inflammation and prevents the development of eosinophilia, both hallmark features of asthma in animal models and humans. The reduced numbers of inflammatory T cells and eosinophils in the lung also result in a marked reduction of Th2 cytokine levels. Th-modified IL-5 DNA vaccination reduces the expression of IL-5 and IL-4 by ∼50% in the airways of allergen-challenged mice. Most importantly, Th-modified IL-5 DNA vaccination restores normal bronchial hyperresponsiveness to β-methacholine. Active vaccination against IL-5 reduces key pathological events associated with asthma, such as Th2 cytokine production, airways inflammation, and hyperresponsiveness, and thus represents a novel therapeutic approach for the treatment of asthma and other allergic conditions.

Original languageEnglish
Pages (from-to)3792-3799
Number of pages8
JournalJournal of Immunology
Volume167
Issue number7
DOIs
Publication statusPublished - 1 Oct 2001
Externally publishedYes

Fingerprint

Dive into the research topics of 'Active vaccination against IL-5 bypasses immunological tolerance and ameliorates experimental asthma'. Together they form a unique fingerprint.

Cite this