TY - JOUR
T1 - Adaptation to leftward-shifting prisms reduces the global processing bias of healthy individuals
AU - Bultitude, Janet H.
AU - Woods, Jill M.
PY - 2010/5
Y1 - 2010/5
N2 - When healthy individuals are presented with peripheral figures in which small letters are arranged to form a large letter, they are faster to identify the global- than the local-level information, and have difficulty ignoring global information when identifying the local level. The global reaction time (RT) advantage and global interference effect imply preferential processing of global-level information in the normal brain. This contrasts with the local processing bias demonstrated following lesions to the right temporo-parietal junction (TPJ), such as those that lead to hemispatial neglect (neglect). Recent research from our lab demonstrated that visuo-motor adaptation to rightward-shifting prisms, which ameliorates many leftward performance deficits of neglect patients, improved the local processing bias of patients with right TPJ lesions (Bultitude, Rafal, & List, 2009). Here we demonstrate that adaptation to leftward-shifting prisms, which can induce neglect-like performance in neurologically healthy individuals, also reduces the normal global processing bias. Forty-eight healthy participants were asked to identify the global or local forms of hierarchical figures before and after adaptation to leftward- or rightward-shifting prisms. Prior to prism adaptation, both groups had greater difficulty ignoring irrelevant global information when identifying the local level (global interference) compared to their ability to ignore irrelevant local-level information when identifying the global level (local interference). Participants who adapted to leftward-shifting prisms showed a significant reduction in global interference, but there was no change in the performance of the rightward-shifting Prism Group. These results show, for the first time, that in addition to previously demonstrated effects on lateralised attention, prism adaptation can influence non-lateralised spatial attention in healthy individuals.
AB - When healthy individuals are presented with peripheral figures in which small letters are arranged to form a large letter, they are faster to identify the global- than the local-level information, and have difficulty ignoring global information when identifying the local level. The global reaction time (RT) advantage and global interference effect imply preferential processing of global-level information in the normal brain. This contrasts with the local processing bias demonstrated following lesions to the right temporo-parietal junction (TPJ), such as those that lead to hemispatial neglect (neglect). Recent research from our lab demonstrated that visuo-motor adaptation to rightward-shifting prisms, which ameliorates many leftward performance deficits of neglect patients, improved the local processing bias of patients with right TPJ lesions (Bultitude, Rafal, & List, 2009). Here we demonstrate that adaptation to leftward-shifting prisms, which can induce neglect-like performance in neurologically healthy individuals, also reduces the normal global processing bias. Forty-eight healthy participants were asked to identify the global or local forms of hierarchical figures before and after adaptation to leftward- or rightward-shifting prisms. Prior to prism adaptation, both groups had greater difficulty ignoring irrelevant global information when identifying the local level (global interference) compared to their ability to ignore irrelevant local-level information when identifying the global level (local interference). Participants who adapted to leftward-shifting prisms showed a significant reduction in global interference, but there was no change in the performance of the rightward-shifting Prism Group. These results show, for the first time, that in addition to previously demonstrated effects on lateralised attention, prism adaptation can influence non-lateralised spatial attention in healthy individuals.
KW - Hemispatial neglect
KW - Hierarchical processing
KW - Prism adaptation
KW - Visual attention
UR - http://www.scopus.com/inward/record.url?scp=77952542003&partnerID=8YFLogxK
U2 - 10.1016/j.neuropsychologia.2010.02.024
DO - 10.1016/j.neuropsychologia.2010.02.024
M3 - Article
C2 - 20219496
AN - SCOPUS:77952542003
SN - 0028-3932
VL - 48
SP - 1750
EP - 1756
JO - Neuropsychologia
JF - Neuropsychologia
IS - 6
ER -