TY - JOUR
T1 - Additivity for derivator K-theory
AU - Cisinski, Denis Charles
AU - Neeman, Amnon
PY - 2008/3/1
Y1 - 2008/3/1
N2 - We prove the additivity theorem for the K-theory of triangulated derivators. This solves one of the conjectures made by Maltsiniotis in [G. Maltsiniotis, La K-théorie d'un dérivateur triangulé, in: Alexei Davydov, Michael Batanin, Michael Johnson, Stephen Lack, Amnon Neeman (Eds.), Categories in Algebra, Geometry and Physics, Conference and Workshop in honor of Ross Street's 60th Birthday, in: Contemp. Math., vol. 431, Amer. Math. Soc., 2007, pp. 341-368]. We also review some basic definitions and results in the theory of derivators in the sense of Grothendieck.
AB - We prove the additivity theorem for the K-theory of triangulated derivators. This solves one of the conjectures made by Maltsiniotis in [G. Maltsiniotis, La K-théorie d'un dérivateur triangulé, in: Alexei Davydov, Michael Batanin, Michael Johnson, Stephen Lack, Amnon Neeman (Eds.), Categories in Algebra, Geometry and Physics, Conference and Workshop in honor of Ross Street's 60th Birthday, in: Contemp. Math., vol. 431, Amer. Math. Soc., 2007, pp. 341-368]. We also review some basic definitions and results in the theory of derivators in the sense of Grothendieck.
KW - Derivators
KW - K-theory
UR - http://www.scopus.com/inward/record.url?scp=38349022487&partnerID=8YFLogxK
U2 - 10.1016/j.aim.2007.10.003
DO - 10.1016/j.aim.2007.10.003
M3 - Article
SN - 0001-8708
VL - 217
SP - 1381
EP - 1475
JO - Advances in Mathematics
JF - Advances in Mathematics
IS - 4
ER -