Adjoint Tomography of Ambient Noise Data and Teleseismic P Waves: Methodology and Applications to Central California

Kai Wang, Yingjie Yang*, Chengxin Jiang, Yi Wang, Ping Tong, Tianshi Liu, Qinya Liu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

Adjoint tomography has been recently applied to ambient seismic noise and teleseismic P waves separately to unveil fine-scale lithospheric structures beyond the resolving ability of traditional ray-based traveltime tomography. In this study, we propose an inversion scheme that alternates between frequency-dependent traveltime inversions of ambient noise surface waves and waveform inversions of teleseismic P waves to take advantage of their complementary sensitivities to the Earth's structure. We apply our method to ambient noise empirical Green's functions from 60 virtual sources, direct P and scattered waves from 11 teleseismic events recorded by a dense linear array (∼7 km station spacing) and other regional stations (∼40 km average station spacing) in central California. To evaluate the performance of the method, we compare tomographic results from ambient noise adjoint tomography, full-waveform inversion of teleseismic P waves, and the alternating inversion of the two data sets. Both applications to practical field data sets and synthetic checkerboard tests demonstrate the advantage of the alternating inversion over individual inversions as it combines the complementary sensitivities of the two independent data sets toward a more unified model. The three dimensional model from our alternating inversion not only shows major features of velocity anomalies and discontinuities in agreement with previous studies, but also reveals small-scale heterogeneities which provide new constraints on the geometry of the Isabella Anomaly and mantle dynamic processes in central California. The proposed alternating inversion scheme can be applied to other regions with similar array deployments for high-resolution lithospheric imaging.

Original languageEnglish
Article numbere2021JB021648
JournalJournal of Geophysical Research: Solid Earth
Volume126
Issue number6
DOIs
Publication statusPublished - Jun 2021

Fingerprint

Dive into the research topics of 'Adjoint Tomography of Ambient Noise Data and Teleseismic P Waves: Methodology and Applications to Central California'. Together they form a unique fingerprint.

Cite this