Abstract
Adsorption isotherms of carbon tetrachloride at temperatures between 273 and 323 K have been determined on the pure silica form of MCM-41 of pore diameter ca. 3.4 nm. All isotherms were of Type V, the isotherms at 273, 288 and 303 K showing hysteresis loops, whereas the isotherm at 323 K was completely reversible. Despite the questionable validity of the Kelvin equation when applied to narrow mesopores, changes in the relative pressure positions of capillary condensation and evaporation as a function of the temperature appear to be well described. Neutron diffraction measurements at 200 and 273 K show significant changes in the physical properties of the adsorbed CCl4 in the MCM-41 from those of bulk adsorbate. The results also suggest a highly heterogeneous surface and appear to show some flexibility in the pore walls upon pore filling. The conditions required for first order reversible capillary condensation are discussed.
Original language | English |
---|---|
Pages (from-to) | 91-96 |
Number of pages | 6 |
Journal | Adsorption |
Volume | 5 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1999 |