Advances in the meta-analysis of heterogeneous clinical trials I: The inverse variance heterogeneity model

Suhail A.R. Doi*, Jan J. Barendregt, Shahjahan Khan, Lukman Thalib, Gail M. Williams

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    438 Citations (Scopus)

    Abstract

    This article examines an improved alternative to the random effects (RE) model for meta-analysis of heterogeneous studies. It is shown that the known issues of underestimation of the statistical error and spuriously overconfident estimates with the RE model can be resolved by the use of an estimator under the fixed effect model assumption with a quasi-likelihood based variance structure - the IVhet model. Extensive simulations confirm that this estimator retains a correct coverage probability and a lower observed variance than the RE model estimator, regardless of heterogeneity. When the proposed IVhet method is applied to the controversial meta-analysis of intravenous magnesium for the prevention of mortality after myocardial infarction, the pooled OR is 1.01 (95% CI 0.71-1.46) which not only favors the larger studies but also indicates more uncertainty around the point estimate. In comparison, under the RE model the pooled OR is 0.71 (95% CI 0.57-0.89) which, given the simulation results, reflects underestimation of the statistical error. Given the compelling evidence generated, we recommend that the IVhet model replace both the FE and RE models. To facilitate this, it has been implemented into free meta-analysis software called MetaXL which can be downloaded from www.epigear.com.

    Original languageEnglish
    Pages (from-to)130-138
    Number of pages9
    JournalContemporary Clinical Trials
    Volume45
    DOIs
    Publication statusPublished - 5 Feb 2015

    Fingerprint

    Dive into the research topics of 'Advances in the meta-analysis of heterogeneous clinical trials I: The inverse variance heterogeneity model'. Together they form a unique fingerprint.

    Cite this