TY - JOUR
T1 - Aging biology and geriatric clinical pharmacology
AU - McLean, Allan J.
AU - Le Couteur, David G.
PY - 2004/6
Y1 - 2004/6
N2 - Population aging evokes doomsday economic and sociological prognostication, despite a minority of older people suffering significant dependency and the potential for advances in therapeutics of age-related disease and primary aging. Biological aging processes are linked mechanistically to altered drug handling, altered physiological reserve, and pharmacodynamic responses. Parenteral loading doses need only be adjusted for body weight as volumes of distribution are little changed, whereas oral loading doses in some cases may require reduction to account for age-related increases in bioavailability. Age-related reduction of hepatic blood flow and hepatocyte mass and primary aging changes in hepatic sinusoidal endothelium with effects on drug transfer and oxygen delivery reduce hepatic drug clearance. Primary renal aging is evident, although renal clearance reduction in older people is predominantly disease-related and is poorly estimated by standard methods. The geriatric dosing axiom, "start low and go slow" is based on pharmacokinetic considerations and concern for adverse drug reactions, not from clinical trial data. In the absence of generalizable dosage guidelines, individualization via effect titration is required. Altered pharmacodynamics are well documented in the cardiovascular system, with changes in the autonomic system, autacoid receptors, drug receptors, and endothelial function to modify baseline cardiovascular tone and responses to stimuli such as postural change and feeding. Adverse drug reactions and polypharmacy represent major linkages to avoidable morbidity and mortality. This, combined with a deficient therapeutic evidence base, suggests that extrapolation of risk-benefit ratios from younger adults to geriatric populations is not necessarily valid. Even so, therapeutic advances generally may convert healthy longevity from an asset of fortunate individuals into a general social benefit.
AB - Population aging evokes doomsday economic and sociological prognostication, despite a minority of older people suffering significant dependency and the potential for advances in therapeutics of age-related disease and primary aging. Biological aging processes are linked mechanistically to altered drug handling, altered physiological reserve, and pharmacodynamic responses. Parenteral loading doses need only be adjusted for body weight as volumes of distribution are little changed, whereas oral loading doses in some cases may require reduction to account for age-related increases in bioavailability. Age-related reduction of hepatic blood flow and hepatocyte mass and primary aging changes in hepatic sinusoidal endothelium with effects on drug transfer and oxygen delivery reduce hepatic drug clearance. Primary renal aging is evident, although renal clearance reduction in older people is predominantly disease-related and is poorly estimated by standard methods. The geriatric dosing axiom, "start low and go slow" is based on pharmacokinetic considerations and concern for adverse drug reactions, not from clinical trial data. In the absence of generalizable dosage guidelines, individualization via effect titration is required. Altered pharmacodynamics are well documented in the cardiovascular system, with changes in the autonomic system, autacoid receptors, drug receptors, and endothelial function to modify baseline cardiovascular tone and responses to stimuli such as postural change and feeding. Adverse drug reactions and polypharmacy represent major linkages to avoidable morbidity and mortality. This, combined with a deficient therapeutic evidence base, suggests that extrapolation of risk-benefit ratios from younger adults to geriatric populations is not necessarily valid. Even so, therapeutic advances generally may convert healthy longevity from an asset of fortunate individuals into a general social benefit.
UR - http://www.scopus.com/inward/record.url?scp=2642572647&partnerID=8YFLogxK
U2 - 10.1124/pr.56.2.4
DO - 10.1124/pr.56.2.4
M3 - Review article
SN - 0031-6997
VL - 56
SP - 163
EP - 184
JO - Pharmacological Reviews
JF - Pharmacological Reviews
IS - 2
ER -