Algebraic-graphical approach for signed dynamical networks

Guodong Shi, Claudio Altafini, John S. Baras

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    2 Citations (Scopus)

    Abstract

    A signed network is a network with each link associated with a positive or negative sign. Models for nodes interacting over such signed networks, where two types of interactions are defined along the positive and negative links, respectively, arise from various biological, social, political, and economical systems. Starting from standard consensus dynamics, there are two basic types of negative interactions along negative links, namely state flipping or relative-state flipping. In this paper, we provide an algebraic-graphical method serving as a systematic tool of studying these dynamics over signed networks. Utilizing generalized Perron-Frobenius theory, graph theory, and elementary algebraic recursions, we show this method is useful to establish a series of basic convergence results for dynamics over signed networks.

    Original languageEnglish
    Title of host publication2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017
    PublisherInstitute of Electrical and Electronics Engineers Inc.
    Pages2009-2014
    Number of pages6
    ISBN (Electronic)9781509028733
    DOIs
    Publication statusPublished - 28 Jun 2017
    Event56th IEEE Annual Conference on Decision and Control, CDC 2017 - Melbourne, Australia
    Duration: 12 Dec 201715 Dec 2017

    Publication series

    Name2017 IEEE 56th Annual Conference on Decision and Control, CDC 2017
    Volume2018-January

    Conference

    Conference56th IEEE Annual Conference on Decision and Control, CDC 2017
    Country/TerritoryAustralia
    CityMelbourne
    Period12/12/1715/12/17

    Fingerprint

    Dive into the research topics of 'Algebraic-graphical approach for signed dynamical networks'. Together they form a unique fingerprint.

    Cite this