Abstract
We put forward a co-axial pump (optical)-probe (x-rays) experimental concept and show performance of the optical component. A Bessel beam generator with a central 100 µm diameter hole (on the optical axis) was fabricated using femtosecond (fs) laser structuring inside a silica plate. This flat-axicon optical element produces a needle-like axial intensity distribution which can be used for the optical pump pulse. The fs-x-ray free electron laser (X-FEL) beam of sub-1 µm diameter can be introduced through the central hole along the optical axis onto a target as a probe. Different realisations of optical pump are discussed. Such optical elements facilitate alignment of ultra-short fs-pulses in space and time and can be used in light-matter interaction experiments at extreme energy densities on the surface and in the volume of targets. Full advantage of ultra-short 10 fs-X-FEL probe pulses with fs-pump (optical) opens an unexplored temporal dimension of phase transitions and the fastest laser-induced rates of material heating and quenching. A wider field of applications of fs-laser-enabled structuring of materials and design of specific optical elements for astrophotonics is presented.
Original language | English |
---|---|
Article number | 024002 |
Journal | JPhys Photonics |
Volume | 3 |
Issue number | 2 |
DOIs | |
Publication status | Published - Apr 2021 |