Abstract
Disorders associated with the malfunction of amino acid transporters mainly affect the function of the intestine, kidney, brain, and liver. Mutations of brain amino acid transporters, for example, alter neuronal excitability (e.g., episodic ataxia due to SLC1A3 (EAAT1) defect and hyperekplexia due to SLC6A5 (GLYT2) deficiency) or brain development (SLC1A1 (EAAT3), SLC3A2/SLC7A5 (CD98hc/LAT1), and SLC1A4 (ASCT1) deficiencies). Mutations of renal and intestinal amino acid transporters SLC3A1/SLC7A9 (rBAT/b0,+AT) and SLC1A1 (EAAT3) cause renal problems (cystinuria and dicarboxylic aminoaciduria, respectively) and malabsorption that can affect whole-body homoeostasis (Hartnup disorder SLC6A19 (B0AT1), lysinuric protein intolerance SLC3A2/SLC7A7 (CD98hc/y+LAT1), and hyperdibasic aminoaciduria type 1). Mutations in the neuronal system A amino acid transporter SLC38A8 (SNAT8) cause eye developmental and visual defects. Inborn errors associated with mitochondrial SLC25 family members such as SLC25A12 (neuronal- and muscle-specific mitochondrial aspartate/glutamate transporter 1; AGC1) (global cerebral hypomyelination), SLC25A13 (aspartate/glutamate transporter 2) (citrin deficiency), SLC25A15 (ornithine-citrulline carrier 2) (homocitrullinuria, hyperornithinemia, and hyperammonemia syndrome), and SLC25A22 (mitochondrial glutamate/H+ symporter 1, GC1) (neonatal myoclonic epilepsy) will be dealt within Chap. 43 (defects of mitochondrial carriers).
Original language | English |
---|---|
Title of host publication | Physician's Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases, Second Edition |
Publisher | Springer International Publishing Switzerland |
Pages | 291-312 |
Number of pages | 22 |
ISBN (Electronic) | 9783030721848 |
ISBN (Print) | 9783030721831 |
DOIs | |
Publication status | Published - 1 Jan 2022 |