TY - GEN
T1 - An adaptive data representation for robust point-set registration and merging
AU - Campbell, Dylan
AU - Petersson, Lars
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/2/17
Y1 - 2015/2/17
N2 - This paper presents a framework for rigid point-set registration and merging using a robust continuous data representation. Our point-set representation is constructed by training a one-class support vector machine with a Gaussian radial basis function kernel and subsequently approximating the output function with a Gaussian mixture model. We leverage the representation's sparse parametrisation and robustness to noise, outliers and occlusions in an efficient registration algorithm that minimises the L2 distance between our support vector - parametrised Gaussian mixtures. In contrast, existing techniques, such as Iterative Closest Point and Gaussian mixture approaches, manifest a narrower region of convergence and are less robust to occlusions and missing data, as demonstrated in the evaluation on a range of 2D and 3D datasets. Finally, we present a novel algorithm, GMMerge, that parsimoniously and equitably merges aligned mixture models, allowing the framework to be used for reconstruction and mapping.
AB - This paper presents a framework for rigid point-set registration and merging using a robust continuous data representation. Our point-set representation is constructed by training a one-class support vector machine with a Gaussian radial basis function kernel and subsequently approximating the output function with a Gaussian mixture model. We leverage the representation's sparse parametrisation and robustness to noise, outliers and occlusions in an efficient registration algorithm that minimises the L2 distance between our support vector - parametrised Gaussian mixtures. In contrast, existing techniques, such as Iterative Closest Point and Gaussian mixture approaches, manifest a narrower region of convergence and are less robust to occlusions and missing data, as demonstrated in the evaluation on a range of 2D and 3D datasets. Finally, we present a novel algorithm, GMMerge, that parsimoniously and equitably merges aligned mixture models, allowing the framework to be used for reconstruction and mapping.
UR - http://www.scopus.com/inward/record.url?scp=84973911518&partnerID=8YFLogxK
U2 - 10.1109/ICCV.2015.488
DO - 10.1109/ICCV.2015.488
M3 - Conference contribution
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 4292
EP - 4300
BT - 2015 International Conference on Computer Vision, ICCV 2015
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 15th IEEE International Conference on Computer Vision, ICCV 2015
Y2 - 11 December 2015 through 18 December 2015
ER -