TY - JOUR
T1 - An analytical model of the response of the meridional overturning circulation to changes in wind and buoyancy forcing
AU - Shakespeare, Callum J.
AU - Hogg, Andrew Mc C.
PY - 2012/8
Y1 - 2012/8
N2 - An analytical model of the full-depth ocean stratification and meridional overturning circulation for an idealized Atlantic basin with a circumpolar channel is presented. The model explicitly describes the ocean response to both Southern Ocean winds and the global pattern and strength of prescribed surface buoyancy fluxes. The construction of three layers, defined by the two isopycnals of overturning extrema, allows the description of circulation and stratification in both the upper and abyssal ocean. The system is fully solved in the adiabatic limit to yield scales for the surface layer thickness, buoyancies of each layer, and overturning magnitudes. The analytical model also allows scaling of the Antarctic Circumpolar Current (ACC) transport. The veracity of the three-layer framework and derived scales is confirmed by applying the analytical model to an idealized geometry, eddy-permitting ocean general circulation model. Consistent with previous results, the abyssal overturning is found to scale inversely with wind stress, whereas the North Atlantic overturning and surface-layer thickness scale linearly with wind stress. In terms of the prescribed surface buoyancy fluxes, increased negative fluxes (buoyancy removal) in the North Atlantic increase the North Atlantic overturning and surface-layer thickness, whereas increased positive fluxes in the middle and low latitudes lead to a decrease in both parameters. Increased negative surface buoyancy fluxes to the south of Drake Passage increase the abyssal overturning and reduce the abyssal buoyancy. The ACC transport scales to first order with the sum of the Ekman transport and the abyssal overturning and thus increases with both wind stress and southern surface buoyancy flux magnitude.
AB - An analytical model of the full-depth ocean stratification and meridional overturning circulation for an idealized Atlantic basin with a circumpolar channel is presented. The model explicitly describes the ocean response to both Southern Ocean winds and the global pattern and strength of prescribed surface buoyancy fluxes. The construction of three layers, defined by the two isopycnals of overturning extrema, allows the description of circulation and stratification in both the upper and abyssal ocean. The system is fully solved in the adiabatic limit to yield scales for the surface layer thickness, buoyancies of each layer, and overturning magnitudes. The analytical model also allows scaling of the Antarctic Circumpolar Current (ACC) transport. The veracity of the three-layer framework and derived scales is confirmed by applying the analytical model to an idealized geometry, eddy-permitting ocean general circulation model. Consistent with previous results, the abyssal overturning is found to scale inversely with wind stress, whereas the North Atlantic overturning and surface-layer thickness scale linearly with wind stress. In terms of the prescribed surface buoyancy fluxes, increased negative fluxes (buoyancy removal) in the North Atlantic increase the North Atlantic overturning and surface-layer thickness, whereas increased positive fluxes in the middle and low latitudes lead to a decrease in both parameters. Increased negative surface buoyancy fluxes to the south of Drake Passage increase the abyssal overturning and reduce the abyssal buoyancy. The ACC transport scales to first order with the sum of the Ekman transport and the abyssal overturning and thus increases with both wind stress and southern surface buoyancy flux magnitude.
KW - Abyssal circulation
KW - Meridional overturning circulation
KW - Ocean circulation
KW - Ocean models
KW - Southern Ocean
UR - http://www.scopus.com/inward/record.url?scp=84864052020&partnerID=8YFLogxK
U2 - 10.1175/JPO-D-11-0198.1
DO - 10.1175/JPO-D-11-0198.1
M3 - Article
SN - 0022-3670
VL - 42
SP - 1270
EP - 1287
JO - Journal of Physical Oceanography
JF - Journal of Physical Oceanography
IS - 8
ER -