TY - JOUR
T1 - An ancient divide in a contiguous rainforest
T2 - Endemic earthworms in the australian wet tropics
AU - Moreau, Corrie S.
AU - Hugall, Andrew F.
AU - McDonald, Keith R.
AU - Jamieson, Barrie G.M.
AU - Moritz, Craig
N1 - Publisher Copyright:
© 2015 Moreau et al.
PY - 2015/9/14
Y1 - 2015/9/14
N2 - Understanding the factors that shape current species diversity is a fundamental aim of ecology and evolutionary biology. The Australian Wet Tropics (AWT) are a system in which much is known about how the rainforests and the rainforest-dependent organisms reacted to late Pleistocene climate changes, but less is known about how events deeper in time shaped speciation and extinction in this highly endemic biota. We estimate the phylogeny of a species-rich endemic genus of earthworms (Terrisswalkerius) from the region. Using DEC and DIVA historical biogeography methods we find a strong signal of vicariance among known biogeographical sub-regions across the whole phylogeny, congruent with the phylogeography of less diverse vertebrate groups. Absolute dating estimates, in conjunction with relative ages of major biogeographic disjunctions across Australia, indicate that diversification in Terrisswalkerius dates back before the mid-Miocene shift towards aridification, into the Paleogene era of isolation of mesothermal Gondwanan Australia. For the Queensland endemic Terrisswalkerius earthworms, the AWT have acted as both a museum of biological diversity and as the setting for continuing geographically structured diversification. These results suggest that past events affecting organismal diversification can be concordant across phylogeographic to phylogenetic levels and emphasize the value of multi-scale analysis, from intra- to interspecies, for understanding the broad-scale processes that have shaped geographic diversity.
AB - Understanding the factors that shape current species diversity is a fundamental aim of ecology and evolutionary biology. The Australian Wet Tropics (AWT) are a system in which much is known about how the rainforests and the rainforest-dependent organisms reacted to late Pleistocene climate changes, but less is known about how events deeper in time shaped speciation and extinction in this highly endemic biota. We estimate the phylogeny of a species-rich endemic genus of earthworms (Terrisswalkerius) from the region. Using DEC and DIVA historical biogeography methods we find a strong signal of vicariance among known biogeographical sub-regions across the whole phylogeny, congruent with the phylogeography of less diverse vertebrate groups. Absolute dating estimates, in conjunction with relative ages of major biogeographic disjunctions across Australia, indicate that diversification in Terrisswalkerius dates back before the mid-Miocene shift towards aridification, into the Paleogene era of isolation of mesothermal Gondwanan Australia. For the Queensland endemic Terrisswalkerius earthworms, the AWT have acted as both a museum of biological diversity and as the setting for continuing geographically structured diversification. These results suggest that past events affecting organismal diversification can be concordant across phylogeographic to phylogenetic levels and emphasize the value of multi-scale analysis, from intra- to interspecies, for understanding the broad-scale processes that have shaped geographic diversity.
UR - http://www.scopus.com/inward/record.url?scp=84947793054&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0136943
DO - 10.1371/journal.pone.0136943
M3 - Article
SN - 1932-6203
VL - 10
JO - PLoS ONE
JF - PLoS ONE
IS - 9
M1 - e0136943
ER -