TY - JOUR
T1 - An improved upper bound for the argument of the Riemann zeta-function on the critical line II
AU - Trudgian, Timothy S.
PY - 2014/1
Y1 - 2014/1
N2 - Text: This paper concerns the function S(. T), where π. S(. T) is the argument of the Riemann zeta-function along the critical line. The main result is that. |S(T)|≤0.112logT+0.278loglogT+2.510, which holds for all T ≥ e. Video: For a video summary of this paper, please click here or visit http://youtu.be/FldP0idE0aI.
AB - Text: This paper concerns the function S(. T), where π. S(. T) is the argument of the Riemann zeta-function along the critical line. The main result is that. |S(T)|≤0.112logT+0.278loglogT+2.510, which holds for all T ≥ e. Video: For a video summary of this paper, please click here or visit http://youtu.be/FldP0idE0aI.
KW - Explicit bounds on S(t)
KW - Riemann zeta-function
UR - http://www.scopus.com/inward/record.url?scp=84884544047&partnerID=8YFLogxK
U2 - 10.1016/j.jnt.2013.07.017
DO - 10.1016/j.jnt.2013.07.017
M3 - Article
SN - 0022-314X
VL - 134
SP - 280
EP - 292
JO - Journal of Number Theory
JF - Journal of Number Theory
ER -