An insertion in the promoter of a malate dehydrogenase gene regulates malic acid content in apple fruit

Meng Gao, Nanxiang Yang, Yingli Shao, Tian Shen, Wenxin Li, Baiquan Ma, Xiaoyu Wei, Yong Ling Ruan, Fengwang Ma, Mingjun Li*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Malic acid is an important flavor determinant in apple (Malus × domestica Borkh.) fruit. One known variation controlling malic acid is the A/G single nucleotide polymorphism in an aluminum-activated malate transporter gene (MdMa1). Nevertheless, there are still differences in malic acid content in apple varieties with the same Ma1 genotype (Ma1/Ma1 homozygous), such as ‘Honeycrisp’ (high malic acid content) and ‘Qinguan’ (low malic acid content), indicating that other loci may influence malic acid and fruit acidity. Here, the F1 (Filial 1) hybrid generation of ‘Honeycrisp’ × ‘Qinguan’ was used to analyze quantitative trait loci for malic acid content. A major locus (Ma7) was identified on chromosome 13. Within this locus, a malate dehydrogenase gene, MDH1 (MdMa7), was the best candidate for further study. Subcellular localization suggested that MdMa7 encodes a cytosolic protein. Overexpression and RNA interference of MdMa7 in apple fruit increased and decreased malic acid content, respectively. An insertion/deletion (indel) in the MdMa7 promoter was found to affect MdMa7 expression and malic acid content in both hybrids and other cultivated varieties. The insertion and deletion genotypes were designated as MA7 and ma7, respectively. The transcription factor MdbHLH74 was found to stimulate MdMa7 expression in the MA7 genotype but not in the ma7 genotype. Transient transformation of fruit showed that MdbHLH74 affected MdMa7 expression and malic acid content in ‘Gala’ (MA7/MA7) but not in ‘Fuji’ (ma7/ma7). Our results indicated that genetic variation in the MdMa7 (MDH1) promoter alters the binding ability of the transcription factor MdbHLH74, which alters MdMa7 (MDH1) transcription and the malic acid content in apple fruit, especially in Ma1/Ma1 homozygous accessions.

Original languageEnglish
Pages (from-to)432-445
Number of pages14
JournalPlant Physiology
Volume196
Issue number1
DOIs
Publication statusPublished - Sept 2024
Externally publishedYes

Fingerprint

Dive into the research topics of 'An insertion in the promoter of a malate dehydrogenase gene regulates malic acid content in apple fruit'. Together they form a unique fingerprint.

Cite this