TY - JOUR
T1 - An integrated natural remanent magnetization acquisition model for the Matuyama-Brunhes reversal recorded by the Chinese loess
AU - Jin, Chunsheng
AU - Liu, Qingsong
AU - Hu, Pengxiang
AU - Jiang, Zhaoxia
AU - Li, Cange
AU - Han, Peng
AU - Yang, Huihui
AU - Liang, Wentian
N1 - Publisher Copyright:
© 2016. American Geophysical Union. All Rights Reserved.
PY - 2016/8/1
Y1 - 2016/8/1
N2 - Geomagnetic polarity reversal boundaries are key isochronous chronological controls for the long Chinese loess sequences, and further facilitate paleoclimatic correlation between Chinese loess and marine sediments. However, owing to complexity of postdepositional remanent magnetization (pDRM) acquisition processes related to variable dust sedimentary environments on the Chinese Loess Plateau (CLP), there is a long-standing dispute concerning the downward shift of the pDRM recorded in Chinese loess. In this study, after careful stratigraphic correlation of representative climatic tie points and the Matuyama-Brunhes boundaries (MBB) in the Xifeng, Luochuan, and Mangshan loess sections with different pedogenic environments, the downward shift of the pDRM is semiquantitatively estimated and the acquisition model for the loess natural remanent magnetization (NRM) is discussed. The measured MB transition zone has been affected by the surficial mixing layer (SML) and remagnetization. Paleoprecipitation is suggested to be the dominant factor controlling the pDRM acquisition processes. Rainfall-controlled leaching would restrict the efficiency of the characterized remanent magnetization carriers aligning along the ancient geomagnetic field. We conclude that the MBB in the central CLP with moderate paleoprecipitation could be considered as an isochronous chronological control after moderate upward adjustment. A convincing case can then be made to correlate L8/S8 to MIS 18/19.
AB - Geomagnetic polarity reversal boundaries are key isochronous chronological controls for the long Chinese loess sequences, and further facilitate paleoclimatic correlation between Chinese loess and marine sediments. However, owing to complexity of postdepositional remanent magnetization (pDRM) acquisition processes related to variable dust sedimentary environments on the Chinese Loess Plateau (CLP), there is a long-standing dispute concerning the downward shift of the pDRM recorded in Chinese loess. In this study, after careful stratigraphic correlation of representative climatic tie points and the Matuyama-Brunhes boundaries (MBB) in the Xifeng, Luochuan, and Mangshan loess sections with different pedogenic environments, the downward shift of the pDRM is semiquantitatively estimated and the acquisition model for the loess natural remanent magnetization (NRM) is discussed. The measured MB transition zone has been affected by the surficial mixing layer (SML) and remagnetization. Paleoprecipitation is suggested to be the dominant factor controlling the pDRM acquisition processes. Rainfall-controlled leaching would restrict the efficiency of the characterized remanent magnetization carriers aligning along the ancient geomagnetic field. We conclude that the MBB in the central CLP with moderate paleoprecipitation could be considered as an isochronous chronological control after moderate upward adjustment. A convincing case can then be made to correlate L8/S8 to MIS 18/19.
KW - Chinese loess
KW - Matuyama-Brunhes boundary
KW - downward offset
KW - postdepositional remanent magnetization
KW - remagnetization
UR - http://www.scopus.com/inward/record.url?scp=84982131454&partnerID=8YFLogxK
U2 - 10.1002/2016GC006407
DO - 10.1002/2016GC006407
M3 - Article
SN - 1525-2027
VL - 17
SP - 3150
EP - 3163
JO - Geochemistry, Geophysics, Geosystems
JF - Geochemistry, Geophysics, Geosystems
IS - 8
ER -