TY - GEN
T1 - An On-Line POMDP Solver for Continuous Observation Spaces
AU - Hoerger, Marcus
AU - Kurniawati, Hanna
N1 - Publisher Copyright:
© 2021 IEEE
PY - 2021
Y1 - 2021
N2 - Planning under partial obervability is essential for autonomous robots. A principled way to address such planning problems is the Partially Observable Markov Decision Process (POMDP). Although solving POMDPs is computationally intractable, substantial advancements have been achieved in developing approximate POMDP solvers in the past two decades. However, computing robust solutions for problems with continuous observation spaces remains challenging. Most on-line solvers rely on discretising the observation space or artificially limiting the number of observations that are considered during planning to compute tractable policies. In this paper we propose a new on-line POMDP solver, called Lazy Belief Extraction for Continuous Observation POMDPs (LABECOP), that combines methods from Monte-Carlo-Tree-Search and particle filtering to construct a policy reprentation which doesn't require discretised observation spaces and avoids limiting the number of observations considered during planning. Experiments on three different problems involving continuous observation spaces indicate that LABECOP performs similar or better than state-of-the-art POMDP solvers.
AB - Planning under partial obervability is essential for autonomous robots. A principled way to address such planning problems is the Partially Observable Markov Decision Process (POMDP). Although solving POMDPs is computationally intractable, substantial advancements have been achieved in developing approximate POMDP solvers in the past two decades. However, computing robust solutions for problems with continuous observation spaces remains challenging. Most on-line solvers rely on discretising the observation space or artificially limiting the number of observations that are considered during planning to compute tractable policies. In this paper we propose a new on-line POMDP solver, called Lazy Belief Extraction for Continuous Observation POMDPs (LABECOP), that combines methods from Monte-Carlo-Tree-Search and particle filtering to construct a policy reprentation which doesn't require discretised observation spaces and avoids limiting the number of observations considered during planning. Experiments on three different problems involving continuous observation spaces indicate that LABECOP performs similar or better than state-of-the-art POMDP solvers.
UR - http://www.scopus.com/inward/record.url?scp=85111174402&partnerID=8YFLogxK
U2 - 10.1109/ICRA48506.2021.9560943
DO - 10.1109/ICRA48506.2021.9560943
M3 - Conference contribution
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 7643
EP - 7649
BT - 2021 IEEE International Conference on Robotics and Automation, ICRA 2021
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2021 IEEE International Conference on Robotics and Automation, ICRA 2021
Y2 - 30 May 2021 through 5 June 2021
ER -