Androgen receptor antagonism accelerates disease onset in the SOD1G93A mouse model of amyotrophic lateral sclerosis

Victoria M. McLeod, Chew L. Lau, Mathew D.F. Chiam, Thusitha W. Rupasinghe, Ute Roessner, Elvan Djouma, Wah C. Boon, Bradley J. Turner*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)

Abstract

Background and Purpose: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease typically more common in males, implicating androgens in progression of both patients and mouse models. Androgen effects are mediated by androgen receptor which is highly expressed in spinal motor neurons and skeletal muscles. To clarify the role of androgen receptors in ALS, we therefore examined the effect of androgen receptor antagonism in the SOD1G93A mouse model. Experimental Approach: The androgen receptor antagonist, flutamide, was administered to presymptomatic SOD1G93A mice as a slow-release subcutaneous implant (5 mg·day−1). Testosterone, flutamide, and metabolite levels were measured in blood and spinal cord tissue by LC–MS–MS. Effects on disease onset and progression were assessed using motor function tests, survival, muscle, and neuropathological analyses. Key Results: Flutamide was metabolised to 2-hydroxyflutamide achieving steady-state plasma levels across the study duration and reached the spinal cord at pharmacologically active concentrations. Flutamide treatment accelerated disease onset and locomotor dysfunction in male SOD1G93A mice, but not female mice, without affecting survival. Analysis of hindlimb muscles revealed exacerbation of myofibre atrophy in male SOD1G93A mice treated with flutamide, although motor neuron pathology was not affected. Conclusion and Implications: The androgen receptor antagonist accelerated disease onset in male SOD1G93A mice, leading to exacerbated muscle pathology, consistent with a role of androgens in modulating disease severity, sexual dimorphism, and peripheral pathology in ALS. These results also demonstrate a key contribution of skeletal muscle pathology to disease onset, but not outcome, in this mouse model of ALS.

Original languageEnglish
Pages (from-to)2111-2130
Number of pages20
JournalBritish Journal of Pharmacology
Volume176
Issue number13
DOIs
Publication statusPublished - Jul 2019
Externally publishedYes

Fingerprint

Dive into the research topics of 'Androgen receptor antagonism accelerates disease onset in the SOD1G93A mouse model of amyotrophic lateral sclerosis'. Together they form a unique fingerprint.

Cite this